
4/19/16	

1	

Low	Level	File	Input	/	Output	

Prof.	Tudor	Dumitraș	
Assistant	Professor,	ECE	
University	of	Maryland,	College	Park	

ENEE	140	

h>p://ter.ps/enee140		

Today’s	Lecture	
• Where	we’ve	been	
–  Scalar	data	types		
–  Arrays	and	strings	
–  FuncLons	
–  Random	number	generaLon	
–  Control	flow	
–  Structuring	complex	programs	
–  Forma>ed	and	character	file	I/O	

• Where	we’re	going	today	
–  Low	Level	File	Input/Output	
–  QuesLons	about	Project	3	

• Where	we’re	going	next	
–  MulL-dimensional	arrays	

2	

4/19/16	

2	

High	Level	and	Low	Level	I/O	

• We’ve	seen	
FILE	*file;	 	can	call	fopen,	fscanf,	getc,	uncgetc,	etc.	on	file		
	

• FILE*	operaLons	are	implemented	using	low-level	file	access	
faciliLes	provided	by	the	UNIX	system	interface	
–  The	FILE	data	structure	maintains	a	buffer	of	bytes		

–  Key	difference:	no	ungetc	=>	no	forma>ed	I/O	
• Low-level	I/O	funcLons	read	and	write	raw	bytes	

–  The	buffer	also	helps	performance	

3	

File	Descriptors	

•  Instead	of	a	FILE*,	the	UNIX	system	interface	represents	files	
with	a	non-negaLve	integer	idenLfier	
–  This	integer	is	called	a	file	descriptor	
–  The	open()	funcLon	returns	a	file	descriptor	

• Three	file	descriptors	are	open	when	a	program	starts	
–  0:	standard	input	(stdin)	
–  1:	standard	output	(stdout)	
–  2:	standard	error	(stderr)	

4	

4/19/16	

3	

Low	Level	File	I/O	
• FuncLons	for	low-level	file	I/O	manipulate	file	descriptors	

#include	<fcntl.h>	
#include	<unistd.h>	
	

char	buffer[N];	 	 	 	 	data	buffer	
int	fd1	=	open(“file1.txt”,	O_RDONLY); 	open	fd1	for	reading	
int	n_read	=	 	 	 	 	returns	num.	bytes	read	

	read(fd1,	buffer,	sizeof(buffer)); 	read	up	to	N	bytes	into	buffer	
	
int	fd2	=	open(“file2.txt”,	O_WRONLY); 	open	fd2	for	wriLng	
int	n_written	=	 	 	 	 	returns	num.	bytes	wri>en	

	write(fd2,	buffer,	sizeof(buffer)); 	write	up	to	N	bytes	from	buffer	

5	

Some	FuncLons	for	Low-Level	I/O	
int	open(const	char	*pathname,	int	flags,	mode_t	mode);	

•  Opens	a	file	and	returns	a	file	descriptor	
•  flags	must	include	one	of	O_RDONLY,	O_WRONLY,	or	O_RDWR	
•  flags	may	also	be	bitwise-or'd	with	O_APPEND	(write	ader	end	of	file),	O_TRUNC	(if	file	exists,	
discard	current	data),	O_CREAT	(create	the	file	if	it	doesn’t	exist),	and	a	few	others	(full	list	in	
man	page)	

•  mode	must	be	provided	with	O_CREAT	and	specifies	the	file	permissions	(e.g.	0600	for	giving	RW	
permissions	to	the	file	owner)	

int	creat(const	char	*pathname,	mode_t	mode);	
•  Equivalent	to	open()	with	O_CREAT|O_WRONLY|O_TRUNC	for		flags			

FILE	*fdopen(int	fd,	const	char	*mode);	
•  Associates	a	FILE*	stream	to	an	exisLng	file	descriptor	

int	unlink(const	char	*pathname);	
•  Deletes	a	file	from	the	filesystem	

off_t	lseek(int	fd,	off_t	offset,	int	whence);	
•  Changes	posiLon	in	file	

int	close(int	fd);	
•  Closes	the	file	associated	with	fd	

6	

4/19/16	

4	

errno	
• We’ve	seen:		

perror(msg);	 	prints	a	message	describing	the	error	ader	msg	
	

•  You	can	also	handle	errors	programmaLcally	
#include	<errno.h>	
…	 	 	 	some	I/O	code	that	may	encounter	errors	
	
if	(errno	==	EACCES)	

	…	 	 	handle	“Permission	denied”	error	
	

•  The	value	of	the	errno	variable	is	the	last	error	that	occurred	
–  Only	meaningful	if	checked	ader	the	funcLon	call	that	encountered	the	error	
–  Manual	pages	for	most	funcLons	specify	possible	values	for	errno	

•  Good	programming	pracLce:	check	the	return	values	of	all	the	
funcLons	you	invoke	–	an	error	may	have	occurred!	

7	

Structures	
•  You	can	create	composite	types	

struct	point	{	
	int	x;	
	int	y;	

};		
struct	point	a,	b;	 	variables	of	composite	type	
a.x	=	0; 	 	 	accessing	members	
a.y	=	0;	
b	=	a;	 	 	 	assignment	
	

• ManipulaLng	struct	variables	
–  Can	assign	them	
–  Can	access	their	members	
–  Can	provide	them	as	parameters	to	a	funcLon	(they	behave	like		scalar	variables)	
–  Can	be	the	return	type	of	a	funcLon	
–  Cannot	compare	them	(e.g.	b	>	a)	 8	

4/19/16	

5	

Using	Structures	in	Your	Programs	
• Structures	and	funcLons	

struct	point	addpoint	(struct	point	p,	int	x,	int	y) 		
{ 	 	 	 	 	Can	pass	a	structure	as	a	parameter		

	struct	point	temp;	
	

	temp.x	=	p.x	+	x; 	 	No	conflict	between	temp.x	and	x	
	temp.y	=	p.y	+	y;	
	return	temp; 	 	 	FuncLons	can	return	structures	

}	

• Arrays	of	structures	
struct	point	point_cloud[1000];	
point_cloud[0].x	=	10;	
point_cloud[0].y	=	20;	

• Good	programming	pracLce:	when	you	need	two	parallel	arrays,	
consider	using	an	array	of	structures	instead	

9	

typedef	

• Create	a	new	type	name,	for	convenient	access	

struct	point	{	

	int	x;	
	int	y;	

};		
typedef	struct	point	Point;	 	new	composite	type	

typedef	int	Length;	 	 	new	scalar	type		

Point	p	=	{0,	0};	 	 	variable	of	type	Point	
Length	l	=	1;	 	 	 	variable	of	type	Length	

	

10	

4/19/16	

6	

Unions	

• Composite	type	that	stores	variables	of	different	types	in	the	
same	memory	locaLon	
union	{	

	int	i;	

	float	f;	
}	u;		

u.i	=	1;	 	 	 	assign	value	to	int	component	of	u	
u.f	=	2.0;		 	 	overwrites	u.i		

• Avoid	unions!	

11	

Review	of	Lecture	
• What	did	we	learn?	
–  Low	level	file	I/O	
–  Error	checking	
–  Structures	and	unions	
–  Reading	program	arguments	provided	on	the	command	line	

• Next	lecture	
– MulLdimensional	arrays	

• Assignments	for	this	week	
–  Read	K&R	5.7	and	review	K&R	Chapters	3.5,	3.7	
– Weekly	challenge:	eight_queens.c		

–  Homework:	lab11.pdf	(on	h>p://ter.ps/enee140),	due	on	Friday	at	11:59	
pm	

