File Input / Output
ENEE 140

Prof. Tudor Dumitras

Assistant Professor, ECE
University of Maryland, College Park

http://ter.ps/eneel40

Today’s Lecture

e Where we’ve been
— Scalar data types
— Arrays and strings
— Functions
— Random number generation
— Control flow
— Structuring complex programs

e Where we’re going today
— 2D arrays
— File Input/Output
— Project 3

e Where we’re going next
— More file 1/0O (low-level functions)

4/12/16

Two-Dimensional Arrays
Needed for Project 3

e Two-dimensional arrays

int a[3][4]; int array with 3 rows and 4 columns (12 elements)
— Think of this as 3 arrays with 4 elements each

>

e Working with 2D arrays

a[oe][e] = o, access element on first row and first column
a[1][2] = e; access element on row 1 and column 2

\ a[o][4] = o; error: index out of bounds

\a[B] [0] = o; error: index out of bounds

— Use 2D arrays to represent matrices

Text File 1/0

¢ Declaring and manipulating file variables
#include <stdio.h>

FILE *file; declare the file variable
mode

— Opening

file = fopen(“filename.txt”, “r”); open file for reading

e Mode “r”: open existing file for reading
e Mode “w”: open file for writing and erase existing content
e Mode “a”: open file for writing and append after existing content

® Opening a file in modes “a” or “w” will create the file if it doesn’t already exist
e The fopen() function returns NULL if there is an error

— Closing
fclose(file); close file

¢ Frequent mistake: Not closing all the files you have opened

4/12/16

Text File I/O — continued

¢ Declaring and manipulating file variables

#include <stdio.h>
FILE *file;

int i;

char line[256];

— Reading

fscanf(file, “%d”, &i);
i = getc(file);
fgets(line, 256, file);

— Writing

fprintf(file, “%d”, i);
putc(i, file);
fputs(line, file);

e The file must be open in order to read or write

declare the file variable

like scanf()
like getchar()

read an entire line

like printf()
like putchar()

write an entire line

A Common Pattern: Reading a File Line-by-Line

#include <stdio.h>

char line[MAX_LINE];
int a, b;
FILE *file;

file = fopen("myfile.txt",

if (file == NULL) {

variable representing the file

open file for reading

fopen() failed

printf ("Could not open the myfile.txt file.\n");
exit (-1);

fgets(line, MAX_LINE, file);
sscanf(line, "%d %d", &a, &b);

read a line of text from the file
parse line with sscanf()

fclose(file); close file &

4/12/16

Position in the File

e When operating on a file, you read/write data sequentially

* You can change the current position in the file
rewind(file); go back to the beginning

offset whence

fseek(file, @, SEEK_END); go to the end of the file
— whence==SEEK_SET: move offset bytes after the beginning of the file
— whence==SEEK_CUR: move offset bytes after the current position

— whence==SEEK_END: move offset bytes after the end of the file
(offset may be negative)

Special Files

e stdio, stdout, stderr

fscanf(stdin, “%d”, &i); read from standard input
fprintf(stdout, “%d”, i); write to standard output
fprintf(stderr, “%d”, i); write to standard error stream

e You don’t have to open or close these special files

e By default, they are associated with the console

— You can redirect them from the command line

prog <infile.txt stdin redirected to infile.txt

prog >outfile.txt stdout redirected to outfile.txt

prog 2>errfile.txt stderr redirected to errfile.txt

progl | prog2 pipe stdout of progl into stdin of prog2

4/12/16

Review: Formatted Input

® You can read from stdin, from a file or from a string

FILE *file;
int read;
char string[256];

read = scanf(format, vars); read from standard input
read = fscanf(file, format, vars); read from file
read = sscanf(string, format, vars); read from string

e These functions allow you to read primitive data types (format
specifiers (%d, %u, %f, etc.)and strings (format specifier %s)

— Remember to put an & before each variable you are reading, e.g.
scanf(“%d”, &a);

e The Xscanf () functions return the number of variables read
— Return is 0: the input did not match the format provided

— Return is EOF: the end-of-file was reached 9

Aside: Pointer Notation in C

e The & and * operators corresponds to the pointer notation in C
— A pointer is the memory address of a variable
— & and * are unary operators (they have a single operand)
— *is used for declaring pointer variables:
e *file is a pointertoa FILE data structure
— & is used for getting a pointer to an existing variable

e &a is the address of variable a

e Internally, C arrays are pointers
— You may see strings declared as char s[] or char *s
— Declaring an array of strings:

char *array_of_strings[];

® Pointer operations will be covered in ENEE 150

10

4/12/16

Review: Formatted Output

* You can write to stdout, to a file, or to a string

FILE *file;
int read;
char s[MAX_S];

printf(format, vars); print to standard output
fprintf(file, format, vars); print to file
sprintf(s, format, vars); print to string

e format uses the same specifiers as the Xscanf functions
— Additionally, may specify the width and precision, e.g. “%4.2f”

— Width or precision may be specified as *: read it from next argument
printf(“%.*s”, MAX_S, s); printat most MAX_S chars from s

— For Xscanf, there is no modifier like * for printf
— For all specifiers and modifiers, see Chapter 7.2 or type man printf

¢ With sprintf, you must be careful not to exceed the size of the string!

Pushing Back Characters

e \We've seen: character I/O
c = getc(file); read a character from file
putc(c, file); write a character to file

e Can also push a character back to the input stream
ungetc(c, file); c will be returned by the next read operation

e The formatted I/O functions (fscanf, fprintf) are implemented
using the character I/O functions

— Ability to push back characters is needed when reading formatted numbers

— You know that you have all the digits of the number when you read a non-
digit character

— But that character may be part of the next formatted input requested
(you’ve read one character too far) => push it back to the stream

12

4/12/16

Status of File Streams

e File operations interact with hardware devices
— These operations may fail

— You must be able to distinguish between these errors and reaching EOF
during normal file operations

® You can check the status of your FILE* stream
FILE *file;

if (ferror(file)) {..} check if an error occurred
if (feof(file)) {..} check if you reached EOF
rewind(file); rewind clears the EOF and error flags
13
Error Checking

e If you receive an error, you can print an error-specific message
#include <stdio.h>
FILE *file;
if ((file=fopen(“my_file.txt”,"r")) == NULL) {
perror(“Cannot open file”); printsa message describing the error
exit(-1);

 perror() appends an error-specific message to the text
provided and prints it to stderr

— You may also print additional error messages to stderr with
fprintf(stderr, ..)

¢ Good programming practice: check the return values of all the
functions you invoke — an error may have occurred!

14

4/12/16

Error Checking: Examples

#include <stdio.h>

FILE *file;
unsigned options;

if ((file=fopen(“my_file.txt”,"r")) == NULL) {

perror(“Cannot open file for reading”);

exit(-1); cannot proceed: file is not opened

if (fscanf(file, "%u", &options) < 1) {
fprintf(stderr, “File must start with an unsigned int”);
printf(“Read %u from the file\n”, options);

if (ferror(stdout)) {
perror (“Error writing to stdout™);

Review of Lecture

e What did we learn?
— 2D arrays
— Opening and closing files
— Changing position in file: rewind, fseek
stdin, stdout, stderr and redirecting program input or output
Review of formatted I/O
Error checking

e Next lecture
— Low level file I/O

e Assignments for this week

Read K&R Chapters 6.2, 6.3, 6.7, 6.8, 8.1, 8.2, 8.3, 8.4

Homework: 1ab10. pdf (on http://ter.ps/eneel40), due on Friday at 11:59 pm
Quiz 9, due on Monday at 11:59 pm

onegct 3:eneeldd_s15_p3.pdf (on http://ter.ps/eneeld0), due on May 10 at
:59 pm

4/12/16

