Integer and Floating Point Arithmetic

ENEE 140

Prof. Tudor Dumitras

Assistant Professor, ECE
University of Maryland, College Park

http://ter.ps/eneel40

Today’s Lecture

Where we’ve been

— Using variables and constants

— Variable assignment and operators
— lterating (while) and branching (if)
— printf() and scanf()

— Functions

— Basics of data types

Where we’re going today

— Unsigned data type

— The % operator

— Prefix and postfix increment operators

— Assignment operators (+=)

— Review of integer & floating point arithmetic

— Overflow and underflow

Where we’re going next

— Data types and type conversion

2/23/16

2/23/16

Prefix and Postfix Increment Operators

e We've seen: increment and decrement operators in C

a++; sameasa=a+1;
++a; sameasa=a+1;
a--; sameasa=a-1;
--a; sameasa=a-1;

e We've also seen: value of assignment expressions
c=b=a-=20; a, band c become 0

e Both a++ and ++a increment a, but they return different values

b = a++; postfix increment: a becomes 1, b becomes 0
b = ++a; prefix increment: a becomes 1, b becomes 1
— Same for a-- and --a

Assignment Operators

e \We’'ve seen

a++; incrementa by 1
a =a+ 10; increment a by 10

¢ Prefix and postfix operators

a =1;
b = a++; a becomes 2, b becomes 1
b = ++a; a becomes 3, b becomes 3

e Other assignment operators

a += 10; increment a by 10
Same for -=, *=, /=, %=

Integer (Euclidean) Division — In Math

e Dividing two integers produces a quotient (g) and a remainder (r)
— The quotient and the remainder always exist and are unique

— Example: dividing a pie with 9 slices among 4 people
(source: Wikipedia)

[}
9 & ‘
9 &

—9/4=>q=2andr=1
e Mathematical definition:

— Given integers a and b, with b # 0: there exist unique integers r,q such that:
ea=b*q+r and
e0<r<b

Integer (Euclidean) Division - Examples

e What are the remainders and quotients when dividing:

=8 by 4 q=2,r=0
"4 by 8 q=0,r=4
= 10 by 10 q=1,r=0

e What is the remainder when dividing:

= (2"-1) by 2 r=1
= 2*n by n r=0
= (27—-1) by 2" r=2"-1

(assume that n is a positive integer)

2/23/16

Computer Arithmetic — Operations

e We've seen
+ -/ * arithmetic operators
— Work for both integer and floating-point variables
— Integer division truncates toward O (i.e. the fractional part is discarded)

e The modulus operator %
— Works only for integers
— Produces the remainder from integer division

int a 5/ 3; valueofais 1

int b

5% 3; value of b is 2

e The valuesof a % n range between @ and (n-1)

Order of Evaluation

e Operator precedence (complete rules in K&R Table 2.1)

1. ! 4+ -- (unary operators)
2. * /%

3. + -

4, < <= > >=

5. == I=

6. &&

7. ||

8. =

e Rule of thumb:
— Division and multiplication come before addition and subtraction

— Put parentheses around everything else

2/23/16

2/23/16

Unsigned Data Types

e \We’'ve seen
int a = -1;

long b = -1;

¢ Unsigned data types are always positive
unsigned a = 1;

unsigned long b = 1;

e Unsigned literals

1U 1 as unsigned constant

1LU 1 as unsigned long constant

Limits for Computer Integers

e Limits for unsigned integers (unsigned, not unsigned long)
— UINT_MIN 0
— UINT_MAX 2W -1

e Limits for signed integers (int, not long int)
— INT_MIN —w-1

— INT_MAX

2w1-1
¢ w is machine dependent

— w =32 on the GRACE machines
— UINT_MAX, INT_MIN and INT_MAX are defined as constantsin limits.h

10

Integer Overflow

e What happens when you add 1 to UINT_MAX?

— The mathematical value (2 —1) + 1 = 2% cannot be stored in an
unsigned variable

— The result of the operation is 0

e |ntuition: unsigned numbers wrap around
— Think of a 12h clock
— 11 0’clock+1h=0 +4h
— We count time modulo 12h -’

— This means that the time displayed

is the remainder from a division by 12
Source: Wikipedia

¢ Unsigned operations are done modulo 2%

11

Unsigned Integer Addition

¢ Mathematical addition

-5 =u+v
e unsigned addition: implements modular arithmetic on w bits
-5 =(u+v) mod 2%

— Example: UINT_MAX + 1 = 2" mod 2% = 0 (overflow)

e Multiplication can overflow in similar manner

— Same for addition and multiplication of signed integers

12

2/23/16

Properties of Signed Integers — Examples

¢ You can represent more negative than positive numbers
— Positive range: 1..(2w1-1)

— Negative range: -1, 2wt

e Signed integers can overflow as well
= INT_MAX +1=INT_MIN

= Adding 2 positive numbers may produce a negative number!

= INT_MIN =1 = INT_MAX

= Adding 2 negative numbers may produce a positive number!

= INT_MIN = -INT_MIN

= INT_MIN is its own inverse
13

Conversion Between Signed and Unsigned

* Type conversion int — unsigned visualized

— Signed int constant: @ ® UINT MAX
— Unsigned constant: @U @® UINT_MAX - 1

® INT MAX + 1

_ unsigned
INT_MAX ® INT_MAX Range
int Range) ® g
1 @
2 @
14
_INT_MIN L4 Source: R. Bryant & D. O’Hallaron

2/23/16

Mathematical Properties of Integer Arithmetic

¢ Closed under addition and multiplication
— Result of signed/unsigned operation is also a signed/unsigned integer

e Commutative

e Associative

¢ 0 is additive identity; 1 is multiplicative identity
e Multiplication distributes over addition

—a*(b+c)=a*b+a*c

¢ Does not obey the ordering properties of math integers

u>0 > u+v>v

u>0,v>0 # u-v>0

15

Properties of Floating Point Numbers

¢ As many negative as positive numbers

e Special values (constants for some of these defined in float.h)

— Max floating point number => operations may overflow
— Min floating point >0 => operations may underflow
— Smallest € such that 1.0+ € # 1.0 => operation results may be rounded

— +Inf, -Inf, NaN (not a number)

e Avoid testing the equality of values resulting from floating point
operations

if (FLT_MAX == (FLT_MAX+1)) {..} condition is true
if (cos(M PI / 2) !=90.0) {.} condition is true

16

2/23/16

Mathematical Properties of Floating Point Arithmetic

¢ Closed under addition and multiplication

— But may generate infinity or NaN

Commutative

¢ Not associative

— (a+b)+c#za+(b+c)

—(@*b)*cza*(b*c)

— Possibility of overflow, inexactness of rounding

Multiplication does not distribute over addition

—a*(b+c)za*b+a*c

— Possibility of overflow, inexactness of rounding

Monotonicity
—azxb = a+c 2 b+c
—a2b &c20 =a*c2b*c

— Exceptions: zInf and NaN

17

Review of Lecture

e What did we learn?
— Unsigned integers
— The % operator
— Prefix and postfix increment operators
— Assignment operators (+=)
— Sizes of data types
— Limits of integer types and overflow
— Properties of integer and floating point arithmetic

e Next lecture

— Data types and type conversion

e Assignments for this week
— Read K&R Chapters 2.2, 2.9, 3.3, 6.1, B5, B6

¢ Note: some of these chapters refer to strings (e.g. char s[]), which we’ll cover later

e For now, think of s[i] as a character variable
— Weekly challenge: dec2bin.c
— Homework: 1ab@5. pdf (on http://ter.ps/enee140), due on Friday at 11:59 pm
— No quiz this week

18

2/23/16

