
2/23/16	

1	

Integer	and	Floa-ng	Point	Arithme-c	

Prof.	Tudor	Dumitraș	
Assistant	Professor,	ECE	
University	of	Maryland,	College	Park	

ENEE	140	

h>p://ter.ps/enee140		

Today’s	Lecture	
•  Where	we’ve	been	

–  Using	variables	and	constants	
–  Variable	assignment	and	operators	
–  IteraMng	(while)	and	branching	(if)	
–  printf()	and	scanf()	
–  FuncMons	
–  Basics	of	data	types	

•  Where	we’re	going	today	
–  Unsigned	data	type	
–  The	%	operator		
–  Prefix	and	posWix	increment	operators	
–  Assignment	operators	(+=)	
–  Review	of	integer	&	floaMng	point	arithmeMc		
–  Overflow	and	underflow	

•  Where	we’re	going	next	
–  Data	types	and	type	conversion	

2	

2/23/16	

2	

Prefix	and	PosFix	Increment	Operators	
• We’ve	seen:	increment	and	decrement	operators	in	C	

	a++; 	 	 	same	as	a	=	a	+	1;	
	++a; 	 	 	same	as	a	=	a	+	1;	
	a--; 	 	 	same	as	a	=	a	-	1;	
	--a; 	 	 	same	as	a	=	a	-	1;	

• We’ve	also	seen:	value	of	assignment	expressions	
	c	=	b	=	a	=	0; 		

•  Both	a++	and	++a	increment	a,	but	they	return	different	values	
	b	=	a++; 	 	posWix	increment:	a	becomes	1,	b	becomes	0	
	b	=	++a; 	 	prefix	increment:	a	becomes	1,	b	becomes	1	

–  Same	for	a--	and	--a	

3	

a,	b	and	c	become	0	

Assignment	Operators	
• We’ve	seen	

a++;	 	 	 	increment	a	by	1	
a	=	a	+	10;	 	 	increment	a	by	10	

• Prefix	and	posWix	operators	
a	=	1; 	 	 		
b	=	a++; 	 	 		
b	=	++a; 	 	 		

• Other	assignment	operators	
a	+=	10; 	 	 	increment	a	by	10	
Same	for	-=,	*=,	/=,	%=	

4	

a	becomes	2,	b	becomes	1	
a	becomes	3,	b	becomes	3		

2/23/16	

3	

Integer	(Euclidean)	Division	–	In	Math	

• Dividing	two	integers	produces	a	quo-ent	(q)	and	a	remainder	(r)	
–  The	quoMent	and	the	remainder	always	exist	and	are	unique	

–  Example:	dividing	a	pie	with	9	slices	among	4	people		
(source:	Wikipedia)	

–  9	/	4	=>	q	=	2	and	r	=	1	
• MathemaMcal	definiMon:		
–  Given	integers	a	and	b,	with	b	≠	0:	there	exist	unique	integers	r,q	such	that:	
• a	=	b*q	+	r 	 	and	
• 0	≤	r<	b	 5	

Integer	(Euclidean)	Division	-	Examples	

• What	are	the	remainders	and	quoMents	when	dividing:	
§  8	 	 	by		4	

§  4	 	 	by		8	

§  10	 	 	by	10	

• What	is	the	remainder	when	dividing:	
§  (2n	–	1) 	by			2		
§  2*n			 	by			n	

§  (2n	–	1) 	by		2n		

(assume	that	n	is	a	posiMve	integer)	

6	

q	=	2,	r	=	0	
q	=	0,	r	=	4	
q	=	1,	r	=	0	

r	=	1	
r	=	0	
r	=	2n	–	1	

2/23/16	

4	

Computer	Arithme-c	–	Opera-ons	
• We’ve	seen	

	+	-	/	* 	 	 	arithmeMc	operators	
– Work	for	both	integer	and	floaMng-point	variables	
–  Integer	division	truncates	toward	0	(i.e.	the	fracMonal	part	is	discarded)	

• The	modulus	operator	%	
– Works	only	for	integers	
–  Produces	the	remainder	from	integer	division	

	int	a	=	5	/	3; 	 	value	of	a	is		
	int	b	=	5	%	3; 	 	value	of	b	is		

	

• The	values	of	a	%	n	range	between		
7	

0	and	(n-1)	

1	

2	

Order	of	Evalua-on	
• Operator	precedence	(complete	rules	in	K&R	Table	2.1)	

1.  !	++	--	(unary	operators)	
2.  *	/	%	
3.  +	-	
4.  <	<=	>	>=	
5.  ==	!=	
6.  &&	
7.  ||	
8.  =		

• Rule	of	thumb:		
–  Division	and	mulMplicaMon	come	before	addiMon	and	subtracMon	
–  Put	parentheses	around	everything	else	

8	

2/23/16	

5	

Unsigned	Data	Types	

• We’ve	seen	
int	a	=	-1;	 	 	 		

long	b	=	-1;	 	 	 		

• Unsigned	data	types	are	always	posiMve	
unsigned	a	=	1; 	 	 		

unsigned	long	b	=	1;	 	 		

• Unsigned	literals	
1U 	 	 	 	1	as	unsigned	constant	

1LU 	 	 	 	1	as	unsigned	long	constant	
	

9	

Limits	for	Computer	Integers	

•  Limits	for	unsigned	integers	(unsigned,	not	unsigned	long)	
–  UINT_MIN 	= 	0	 	 	 	 		

–  UINT_MAX 	= 		2w	–	1 	 		

•  Limits	for	signed	integers	(int,	not	long	int)	
–  INT_MIN 	= 		–2w–1 		

–  INT_MAX 	= 		2w–1	–	1 		

• w	is	machine	dependent	
–  w	=	32	on	the	GRACE	machines	
–  UINT_MAX,	INT_MIN	and	INT_MAX	are	defined	as	constants	in	limits.h	

10	

2/23/16	

6	

Integer	Overflow	

• What	happens	when	you	add	1	to	UINT_MAX?	
–  The	mathemaMcal	value	(2w	–	1)	+	1	=	2w	cannot	be	stored	in	an	
unsigned	variable	

–  The	result	of	the	operaMon	is	0	

•  IntuiMon:	unsigned	numbers	wrap	around	
–  Think	of	a	12h	clock	
–  11	o’clock	+	1h	=	0	
– We	count	Mme	modulo	12h	

–  This	means	that	the	Mme	displayed		
is	the	remainder	from	a	division	by	12	

• Unsigned	opera-ons	are	done	modulo	2w		
11	

Source:	Wikipedia	

Unsigned	Integer	Addi-on	

• MathemaMcal	addiMon	
–  s 	 	 	 	=	u	+	v	

• unsigned	addiMon:	implements	modular	arithmeMc	on	w	bits	
–  s 	 	 	 	=	(u	+	v)		mod	2w	

–  Example:	UINT_MAX	+	1	 	=	2w	mod	2w	=	0	(overflow)	

• MulMplicaMon	can	overflow	in	similar	manner	
–  Same	for	addiMon	and	mulMplicaMon	of	signed	integers	

12	

2/23/16	

7	

Proper-es	of	Signed	Integers	–	Examples		

• You	can	represent	more	negaMve	than	posiMve	numbers	
–  PosiMve	range:	 	1		..	(2w–1	–	1)	

–  NegaMve	range:	 	-1	..	–2w–1	

• Signed	integers	can	overflow	as	well	
§  INT_MAX	+	1	=	INT_MIN	
§ Adding	2	posi-ve	numbers	may	produce	a	nega-ve	number!	

§  INT_MIN	–	1	=	INT_MAX	
§ Adding	2	nega-ve	numbers	may	produce	a	posi-ve	number!	

§  INT_MIN	=	-INT_MIN	
§  INT_MIN	is	its	own	inverse	

13	

Conversion	Between	Signed	and	Unsigned	

• Type	conversion	int	→	unsigned	visualized	
–  Signed	int	constant:	0	
–  Unsigned	constant:	0U	

14	

0	

INT_MAX	

INT_MIN	

–1	
–2	

0	

UINT_MAX	
UINT_MAX	–	1	

INT_MAX	
INT_MAX	+	1	

int	Range	

unsigned	
Range	

Source:	R.	Bryant	&	D.	O’Hallaron	

2/23/16	

8	

Mathema-cal	Proper-es	of	Integer	Arithme-c	

• Closed	under	addiMon	and	mulMplicaMon	
–  Result	of	signed/unsigned	operaMon	is	also	a	signed/unsigned	integer	

• CommutaMve	

• AssociaMve	
• 0		is	addiMve	idenMty;	1	is	mulMplicaMve	idenMty	

• MulMplicaMon	distributes	over	addiMon	
–  a	*	(b	+	c)	=	a*b	+	a*c	

• Does	not	obey	the	ordering	proper-es	of	math	integers	
u	>	0 	≠> 	u	+	v	>	v	
u	>	0,	v	>	0 	≠> 	u	·	v	>	0	

15	

Proper-es	of	Floa-ng	Point	Numbers	

• As	many	negaMve	as	posiMve	numbers	

• Special	values	(constants	for	some	of	these	defined	in	float.h)	
– Max	floaMng	point	number 	 	⇒	operaMons	may	overflow	

– Min	floaMng	point	>	0	 	 	⇒	operaMons	may	underflow	
–  Smallest	ε	such	that	1.0	+	ε	≠	1.0 	⇒	operaMon	results	may	be	rounded	

–  +Inf,	-Inf,	NaN	(not	a	number)	

• Avoid	tes-ng	the	equality	of	values	resulMng	from	floaMng	point	
operaMons	
if	(FLT_MAX	==	(FLT_MAX+1))	{…} 	condiMon	is	true	
if	(cos(M_PI	/	2)	!=	0.0)	{…} 	 	condiMon	is	true	

	 16	

2/23/16	

9	

Mathema-cal	Proper-es	of	Floa-ng	Point	Arithme-c	
•  Closed	under	addiMon	and	mulMplicaMon	
–  But	may	generate	infinity	or	NaN	

•  CommutaMve	
•  Not	associa-ve	
–  (a	+	b)	+	c	≠	a	+	(b	+	c)	
–  (a	*	b)	*	c	≠	a	*	(b	*	c)	
–  Possibility	of	overflow,	inexactness	of	rounding	

• MulMplicaMon	does	not	distribute	over	addiMon	
–  a	*	(b	+	c)	≠	a	*	b	+	a	*	c	
–  Possibility	of	overflow,	inexactness	of	rounding	

• Monotonicity	
–  a	≥	b 	 	⇒	a+c	≥	b+c	
–  a	≥	b		&	c	≥	0			 	⇒	a	*	c	≥	b	*c	
–  Excep-ons:	±Inf	and	NaN	

17	

Review	of	Lecture	
•  What	did	we	learn?	
–  Unsigned	integers	
–  The	%	operator		
–  Prefix	and	posWix	increment	operators	
–  Assignment	operators	(+=)	
–  Sizes	of	data	types	
–  Limits	of	integer	types	and	overflow	
–  ProperMes	of	integer	and	floaMng	point	arithmeMc	
	

•  Next	lecture	
–  Data	types	and	type	conversion	

•  Assignments	for	this	week	
–  Read	K&R	Chapters	2.2,	2.9,	3.3,	6.1,	B5,	B6	

•  Note:	some	of	these	chapters	refer	to	strings	(e.g.	char	s[]),	which	we’ll	cover	later	
•  For	now,	think	of	s[i]	as	a	character	variable	

–  Weekly	challenge:	dec2bin.c		
–  Homework:	lab05.pdf	(on	h>p://ter.ps/enee140),	due	on	Friday	at	11:59	pm	
–  No	quiz	this	week	

18	

