
2/16/16	

1	

Func%ons	

Prof.	Tudor	Dumitraș	
Assistant	Professor,	ECE	
University	of	Maryland,	College	Park	

ENEE	140	

h=p://ter.ps/enee140	

Today’s	Lecture	

• Where	we’ve	been	
–  Variables	and	constants	
–  Variable	assignment	and	operators	

–  ints,	floats	and	chars	
–  IteraLng	(while,	for)	and	branching	(if)	

• Where	we’re	going	today	
–  FuncLons	

• Where	we’re	going	next	
–  Integer	and	floaLng	point	arithmeLc	

2	

2/16/16	

2	

Forma?ed	Input	and	Output	
• We’ve	seen:	

	int	a	=	0;	
	printf(“The	value	of	a	is	%d\n”,	a);	

•  You	can	output	data	with	printf	and	read	data	from	the	input	with	scanf	

• printf	format	specifiers	
–  %d:	int 	 	 	%ld:	long	
–  %f:	float,	double 	 	%E:	float,	double	in	scienLfic	notaLon,	e.g.	1.5E3	
–  %c:	character 	 	%%:	the	‘%’	character	
–  See	Table	7.1	in	K&R	for	a	complete	specificaLon	

• Or	type	man	3	printf	on	the	command	line	

•  Read	data	from	the	input	
	int	a,	b;	
	scanf(“%d	%d”,	&a,	&b);	 3	

Promp%ng	the	User	for	Input	

• Print	a	message	indicaLng	the	input	expected	
• Then	read	the	input	

	int	sec;	
	float	gpa;	

	
	printf(“Enter	your	section	number:	”);	
	scanf(“%d”,	&sec);	

	

	printf(“Enter	your	GPA:	”);	
	scanf(“%f”,	&gpa);	

	

	 4	

2/16/16	

3	

Func%ons	
•  FuncLons	allow	you	to	encapsulate	computaLon	
–  You	don’t	care	how	a	job	is	done;	you	know	what	is	done	

•  Examples	of	funcLons	we’ve	seen	so	far	
	printf(“The	value	of	a	is	%d\n”,	a); 	 	print	an	int	variable	
	c	=	getchar(); 	 	 	 	 	read	a	character	

•  You	can	use	these	funcLons	in	your	programs	without	knowing	how	
they	are	implemented	

•  You	can	also	define	your	own	funcLons	
–  Example:		

	int	main()	{	
	 	…	
	 	return	0;	
	} 	 		 5	

Func%ons	
•  FuncLon	declara%on	(prototype)	

int	square(int	param);	

•  FuncLon	defini%on	(implementaLon)	
int 	 	 	 	 	return	type	
square(int	param) 	 	 	funcLon	name	and	parameter	list	
{	

	int	result; 	 	 	variable	declaraLons	
	result	=	param	*	param; 	statements	
	return	result; 	 	return	specificaLon	

}	

•  FuncLon	invoca%on	(calling	the	funcLon	in	your	program)	
int	a	=	1+square(2)+square(3); 	use	the	funcLon	in	an	expression	
	

•  You	must	declare	or	define	a	funcLon	before	you	invoke	it	 6	

2/16/16	

4	

Func%on	Parameters	and	Local	Variables	
•  FuncLon	parameters	(arguments)	
–  Parameters	must	have	types	(e.g.	int,	float)	and	are	specified	in	the	funcLon	
declaraLon	and	definiLon:	

	int	pow(int	x,	int	y);	the	funcLon	takes	2	int	parameters	

–  When	you	call	a	funcLon,	you	must	pass	as	many	parameters	as	in	the	prototype	
	z	=	pow(2,	3); 	 	the	types	must	match	as	well	

–  Modifying	the	arguments	inside	the	funcLon	does	not	affect	the	original	
variables	

–  The	funcLon	operates	on	a	copy	of	the	variable	
	int	a	=	2;	
	my_function(a);	 	a	is	sLll	2,	regardless	of	what	happens	in	the	funcLon	

	

•  Variables	local	to	the	func%on	
–  You	can	declare	variables	inside	the	funcLon,	like	you	do	in	main()		

•  Parameters	are	local	variables	cannot	be	accessed	outside	the	func%on	

Return	Values	

• The	type	return	value	is	specified	in	the	prototype,	before	the	
name	of	the	funcLon	
int	pow(int	x,	int	y); 	the	funcLon	returns	an	int	

	

•  It	is	also	possible	to	write	a	funcLon	that	does	not	return	
anything	
void 	 	 	 	return	type	is	void 		

err_msg(int	code) 	 	funcLon	with	int	parameter	

{	

	printf(“Encountered	an	error	with	code	%d\n”,	code);	 	
	 		

} 	 	 	 	return	statement	is	not	needed	

	

8	

2/16/16	

5	

Modularity	
•  FuncLons	allow	you	to	break	down	your	program’s	funcLonality	into	
smaller	pieces	

•  Programs	that	are	made	up	of	many	small	funcLons	are	called	
modular	
–  In	such	programs	it’s	easy	to	modify	one	funcLon,	without	affecLng	how	the	
rest	of	the	program	works	

–  Modular	code	is	also	easier	to	read	

• Modular	programs	are	the	result	of	top-down	problem	solving	
–  Break	down	the	problem	you	need	to	solve	into	smaller	sub-problems	
–  For	each	sub-problem,	write	the	prototype	of	a	funcLon	that	would	solve	it	
–  Write	your	program	by	invoking	these	funcLons,	assuming	that	they	are	
implemented	

–  Then	figure	out	how	to	implement	each	funcLon	
9	

Modularity	–	cont’d	
•  Example	of	top-down	problem	solving	
–  You	are	asked	to	write	a	program	that	prints	a	Celsius-Fahrenheit	conversion	
table	

–  Imagine	that	you	have	a	funcLon,	which	takes	a	float	argument	represenLng	
the	temperature	in	Fahrenheit	degrees,	and	returns	a	float	with	the	
corresponding	Celsius	value	

–  Write	the	loop	that	prints	the	conversion	table	
–  Then	look	up	the	conversion	formula	and	implement	the	funcLon	

•  Helper	funcLons	
–  In	your	assignments,	you	will	ofen	be	asked	to	implement	funcLons	that	
provide	a	certain	funcLonality	

–  It	is	ofen	a	good	idea	to	write	addiLonal	helper	funcLons	that	you	use	in	your	
program	

–  For	example,	such	helper	funcLons	may	provide	funcLonality	that	is	useful	for	
several	tasks		

10	

2/16/16	

6	

Mathema%cal	Func%ons	Available	in	C	

• These	funcLons	typically	accept	and	return	variables	of	type	double	
#include	<math.h> 	 	must	include	this	header	to	use	the	math		

	 	 	 	funcLons	(more	on	this	later)	

sin(x); 	 	 	sine	of	x	(in	radians)	
cos(x); 	 	 	cosine	of	x	(in	radians)	

exp(x); 	 	 	ex	

log(x); 	 	 	natural	logarithm	of	x	

log10(x); 	 	 	base	10	logarithm	of	x	

sqrt(x); 	 	 	square	root	of	x	
…		

11	

Aside:	Manual	Pages	

• You	can	get	help	on	most	funcLons	from	the	C	standard	library	
using	the	man	command	on	the	GRACE	machines	
man	printf 	 	 	manual	page	of	printf()	funcLon	

man	scanf 	 	 	manual	page	of	scanf()	funcLon	

	

12	

2/16/16	

7	

Review	of	Lecture	
•  What	did	we	learn?	
–  Declaring	a	funcLon	(i.e.	deciding	the	parameter	list	and	return	type)	
–  Defining	a	funcLon	(i.e.	implemenLng	the	funcLon)	
–  Invoking	a	funcLon	(i.e.	using	the	funcLon	in	your	code)	
–  printf,	scanf	and	math	funcLons	
–  Modularity	
–  Debugging	
	

•  Next	lecture	
–  Integer	and	floaLng	point	arithmeLc	

•  Assignments	for	this	week	
–  Read	K&R	Chapters	2.5,	2.7,	2.8,	2.10,	B2,	B11	

•  Note:	some	of	these	chapters	refer	to	strings	(e.g.	char	s[]),	which	we’ll	cover	later	
•  For	now,	think	of	s[i]	as	a	character	variable	
•  Read	man	pages	for	rand()	and	srand();	try	to	understand	the	implementaLons	on	page	46	

–  Weekly	challenge:	read_divide_ints.c		
–  Homework:	enee140_lab04.pdf,	due	on	Friday	at	11:59	pm	
–  Quiz	4,	due	on	Monday	at	11:59	pm	

