
2/9/16	

1	

3.	Character	Input/Output	

Prof.	Tudor	Dumitraș	
Assistant	Professor,	ECE	
University	of	Maryland,	College	Park	

ENEE	140	

h>p://ter.ps/enee140	

Today’s	Lecture	
• Where	we’ve	been	
–  Variables	and	Constants	
–  ArithmeKc	operaKons	
–  while	loops	

• Where	we’re	going	today	
–  Increment,	relaKonal	and	logical	operators	
–  Branching:	if	statement	
–  Loops:	for		
–  Data	types:	chars	
–  Input	and	output	

• Where	we’re	going	next	
–  FuncKons	

2	

2/9/16	

2	

Reminder:	Textbook	ClarificaKons	

•  If	you	find	the	K&R	textbook	confusing	…	

…	Consult	Steve	Summit’s	excellent	notes	on	the	textbook:	
h>p://www.eskimo.com/~scs/cclass/krnotes/top.html	
–  Linked	from	the	class	web	page	

3	

Increment	Operators	
• We’ve	seen	

	a	=	a	+	1; 	 	increment	by	assigning	old	value	+	1	

•  Increment	and	decrement	operators	in	C	
	a++; 	 	 	same	as	a	=	a	+	1;	
	++a; 	 	 	same	as	a	=	a	+	1;	
	a--; 	 	 	same	as	a	=	a	-	1;	
	--a; 	 	 	same	as	a	=	a	-	1;	

–  There	is	a	subtle	difference	between	a++	and	++a	(more	on	this	later)	

•  Assignment	operaKons	also	return	the	value	assigned	
	a	=	0;	 	 		
	b	=	a++; 	 	both	a	and	b	become	1	
	a	=	b	=	0; 	 	both	a	and	b	become	0	 4	

2/9/16	

3	

Value	of	Assignment	Expression	

•  In	C,	an	assignment	expression	returns	the	value	that	is	assigned	
	b	=	(a	=	0);	 	a	becomes	0,	and	b	also	becomes	0	

• This	means	that	you	can	write	things	like	this:	
	c	=	b	=	a	=	0; 	 	a,	b	and	c	become	0	

5	

Specifying	CondiKons	

• We’ve	seen	
while	(condition)	{	statements	executed	repeatedly	while	condi&on	is	true	

	statements 	 	 		

}	

	

How	can	we	specify	the	condiKon?	

	

6	

2/9/16	

4	

RelaKonal	and	Logical	Operators	

• We’ve	seen:	relaKonal	operators,	used	for	specifying	condiKons	
	if	(a	<	b)	{…} 	 	condi&on:	if	a	less	than	b	
	if	(a	>	b)	{…} 	 	condi&on:	if	a	greater	than	b	
	if	(a	<=	b)	{…} 	 	condi&on:	if	a	less	than	or	equal	to	b	
	if	(a	>=	b)	{…} 	 	condi&on:	if	a	greater	than	or	equal	b	
	if	(a	==	b)	{…} 	 	condi&on:	if	a	equal	to	b	
	if	(a	!=	b)	{…} 	 	condi&on:	if	a	not	equal	to	b	

	

•  Logical	operators	are	used	for	combining	condiKons	
	if	(cond1	&&	cond2)	{…} 	condi&on:	both	cond1	and	cond2	
	if	(cond1	||	cond2)	{…} 	condi&on:	either	cond1	or	cond2	
	if	(!cond1)	{…} 	 	condi&on:	not	cond1		

	

	

	
7	

Branching	

• Execute	statements	condiKonally	
	if	(condition)	{ 	statements	are	executed	if	condi&on	is	true	

	 	statements 	 	 		

	}	

• Provide	alternaKve	to	the	condiKon	
	if	(condition)	{ 	statements	are	executed	if	condi&on	is	true	

	 	statements 	 	 		

	}	else	{	

	 	statements_2 	statements_2	are	executed	if	condi&on	is	false	

	}	

	
8	

2/9/16	

5	

Loops	
• We’ve	seen	

	int	i	=	0;	 	 	 	 	ini&alize	i	
	while	(i	<	10)	{ 	 	 	test	!(exit	condi&on)		
	 	…	
	 	i++; 	 	 	 	increment	i 		
	}	

•  Iterate	over	a	set	of	values	
	int	i;	
	for	(i	=	0;	i	<	10;	i++)	{ 	 	iterate	over	i	in	[0,	10)	
	 	… 	 	 		
	}	

•  Important:	every	loop	must	have	an	exit	condi*on	that	eventually	
becomes	true	

9	

Common	Mistake:	Infinite	Loops	
• While	loop	example:	

	int	i	=	0;	 	 	 	 		

	while	(i	<	10)	{ 	 	 		

	 	prinj(“%d\n”,	i);	

	 	if	(i	>0)	{	

	 	 	i++; 	 	i	is	never	incremented	

	 	}	

	}	

•  For	loop	example:	
	int	i	=	0;	 	 	 	you	may	omit	any	of	the		

	for	(;	i	<	10	;)	{ 	 	3	components	of	a	for	statement	…	

	 		prinj(“%d\n”,	i);	 	 	…	but	you	must	sKll	ensure	the	loop	exit	

	}	

	
10	

2/9/16	

6	

ImplementaKon	OpKons	for	CondiKonal	ExecuKon	
•  How	many	Kmes	is	the	block	executed?	

	if	(i	<	10)	{ 	 	 		

	 	block	of	statements	
	}	

•  How	many	Kmes	is	the	block	executed?	
	while	(i	<	10)	{	 	 		
	 	block	of	statements	

	}	

•  How	many	Kmes	is	the	block	executed?	
	for	(i	=	0;	i	<=	10;	i++)	{ 	 		

	 	block	of	statements 		
	}	

	

11	

0	or	1	Kmes	

0–∞	Kmes	

11	Kmes	(assuming	
that	i	is	not	modified	
inside	the	block)	

Data	Types	
•  We’ve	seen	

	int	a	=	1; 	 	 	integer	variable	

	float	b	=	1.1; 	 	 	floaKng-point	variable	

•  Larger	data	types	(can	hold	larger	values)	
	long	a	=	1; 	 	 	integer	variable	

	double	b	=	1.1; 	 	 	floaKng-point	variable	

•  Characters	
	char	c	=	'A'; 	 	 	holds	one	character	

	char	c	=	'\n';	

•  A	data	type	is	a	set	of	rules	for	handling	a	certain	kind	of	variables	
–  Rules	govern	the	interpretaKon	of	internal	representaKons	and	the	operaKons	allowed	

• We	will	discuss	the	implicaKons	of	int	and	float	representaKons	in	future	lectures	
–  In	C,	you	must	specify	the	type	when	declaring	each	variable	

12	

2/9/16	

7	

The	char	Data	Type	
•  Internally,	characters	are	represented	as	integers	

•  Rules	for	interpreKng	the	value	of	the	stored	data	
	char	c	=	'D'	+	1; 	 	 	value	of	c	is	‘E’	

	int	diff	=	'c'	–	'a';	 	 	value	of	diff	is	2	

	if	(c	>=	'A'	&&	c	<=	'Z')	{	…	} 	check	if	c	is	uppercase	

•  A–Z	have	consecuKve	codes	(numerical	values).	So	do	a–z	and	0–9	
–  The	offset	between	the	lowercase	and	uppercase	versions	of	a	character	is	
always	the	same	

	'A'	–	'a'	==	'B'	–	'b'	 	 	 		
	
–  ConverKng	a	lowercase	character	to	uppercase	

	c	=	c	+	 	 	 		

	 13	

'A'	–	'a';	 add	the	offset	of	the	
uppercase	range	

Reading	and	WriKng	Characters	

• Read	one	character	from	the	input	
	int	c	=	getchar();	

• Write	one	character	to	the	output	
	putchar(c);	
	printf("%c",	c);	

•  Important:	getchar()	returns	an	int	rather	than	a	char	
–  This	allows	the	funcKon	to	return	the	special	value	EOF	when	no	more	
input	is	available	

	while	(getchar()	!=	EOF)	{	

	 	…	

	}	
14	

2/9/16	

8	

More	on	the	char	Data	Type	
•  Internally,	characters	are	represented	as	integers	

•  The	corresponding	value	of	the	character	is	determined	by	an	
encoding	scheme	
–  For	char:	American	Standard	Code	for	InformaKon	Interchange	(ASCII)	
–  Other	encoding	schemes:	Unicode	

•  You	can	examine	the	internal	encoding	of	characters	
	printf("%d",	c);	

•  Good	programming	pracKce:	Do	not	rely	on	the	internal	values	of	
the	encoding	

	c	=	c	+	'A'	–	'a'; 	 	 	instead	of	
	c	=	c	-	32; 	 	 		

15	

Review	of	Lecture	
• What	did	we	learn?	
–  Increment,	relaKonal	and	logic	operators	
–  Value	of	assignment	expression	
–  if	and	for	statements	
–  Character	representaKon	
–  Special	characters,	EOF	
–  Character	I/O		
	

•  Next	lecture	
–  FuncKons	

•  Assignments	for	this	week	
–  Read	K&R	Chapters	1.7,	1.8,	7.2,	7.4,	B4	
–  Weekly	challenge:	temperature_conversion_function.c	
–  Homework:	enee140_lab03.pdf,	due	on	Friday	at	11:59	pm	
–  Quiz	3,	due	on	Monday	at	11:59	pm	

