3. Character Input/Output
ENEE 140

Prof. Tudor Dumitras

Assistant Professor, ECE
University of Maryland, College Park

http://ter.ps/eneel40

Today’s Lecture

e Where we’ve been
— Variables and Constants
— Arithmetic operations
— while loops

e Where we’re going today

Increment, relational and logical operators

Branching: if statement

Loops: for

Data types: chars

Input and output

e Where we’re going next

— Functions

2/9/16

Reminder: Textbook Clarifications

e |f you find the K&R textbook confusing ...

... Consult Steve Summit’s excellent notes on the textbook:
http://www.eskimo.com/~scs/cclass/krnotes/top.html

— Linked from the class web page

Increment Operators

e We've seen

a=a+1; increment by assigning old value + 1

e Increment and decrement operators in C

a++; sameasa=a+1;
++a; sameasa=a+1;
a--; sameasa=a-1;
--a; sameasa=a-1;

— There is a subtle difference between a++ and ++a (more on this later)

e Assignment operations also return the value assigned

a = 0;
b = a++; both a and b become 1
a=b=0; both a and b become 0

2/9/16

Value of Assignment Expression

¢ In C, an assignment expression returns the value that is assigned

b=(a=20); a becomes 0, and b also becomes 0

¢ This means that you can write things like this:

c=Db=a-=0; a, band c become 0

Specifying Conditions

* We've seen
while (condition) { statements executed repeatedly while condition is true

statements

How can we specify the condition?

2/9/16

Relational and Logical Operators

e \We've seen: relational operators, used for specifying conditions

if (a < b) {.} condition: if a less than b

if (a > b) {.} condition: if a greater than b

if (a <= b) {.} condition: if a less than or equal to b
if (a >= b) {.} condition: if a greater than or equal b
if (a == b) {.} condition: if a equal to b

if (a = b) {.} condition: if a not equal to b

e Logical operators are used for combining conditions

if (condl && cond2) {..} condition: both condl and cond2
if (cond1l || cond2) {.} condition: either condl or cond2

if (lcond1) {.} condition: not cond1
7
Branching
¢ Execute statements conditionally
if (condition) { statements are executed if condition is true
statements
}

¢ Provide alternative to the condition
if (condition) { statements are executed if condition is true
statements
}else {

statements_2 statements_2 are executed if condition is false

2/9/16

Loops

e We've seen

int initialize i

while (i < 10)) { test !(exit condition)
i++; increment i
e |terate over a set of values

int i;
for qi = 0;

i< 1@|; |i++1 { iterate overiin [0, 10)

}

¢ Important: every loop must have an exit condition that eventually
becomes true

Common Mistake: Infinite Loops

e While loop example:
int i = 0;
while (1 < 10) {
printf(“%d\n”, i);

if (i >0) {
i++; i is never incremented

}

}

e For loop example:

int i = 0; you may omit any of the

for D i< 10 D { 3 components of a for statement ...
printf(“%d\n”, i); ... but you must still ensure the loop exit

10

2/9/16

Implementation Options for Conditional Execution

e How many times is the block executed?
if (i < 10) {

block of statements 0or1times
}
e How many times is the block executed?
while (1 < 10) {
block of statements 0—oco times

e How many times is the block executed?
for (i =0; 1 <= 10; i++) {

block of statements 11 times (assuming

} that i is not modified
inside the block)

11

Data Types

e We've seen
int a = 1; integer variable
float b = 1.1; floating-point variable

o Larger data types (can hold larger values)
long a = 1; integer variable

double b = 1.1; floating-point variable

e Characters

char ¢ holds one character

I}
>

char ¢ = '\n';

e A data type is a set of rules for handling a certain kind of variables

— Rules govern the interpretation of internal representations and the operations allowed
o We will discuss the implications of int and float representations in future lectures

— In C, you must specify the type when declaring each variable
12

2/9/16

The char Data Type

¢ Internally, characters are represented as integers

e Rules for interpreting the value of the stored data

char c = 'D' + 1; value of ciis ‘F’
int diff = 'c¢' - 'a'; value of diff is 2
if (c >= 'A' & c <= 'Z2") { .. } check if c is uppercase

e A—Z have consecutive codes (numerical values). So do a—z and 0-9

— The offset between the lowercase and uppercase versions of a character is
always the same

"A' - '3' == 'B' - 'pb°

— Converting a lowercase character to uppercase
c=c+ 'A" - "a’; add the offset of the
uppercase range

13

Reading and Writing Characters

e Read one character from the input
int ¢ = getchar();

e Write one character to the output

putchar(c);
printf("%c", c);

e Important: getchar() returns an int rather than a char

— This allows the function to return the special value EOF when no more
input is available

while (getchar() != EOF) {

14

2/9/16

More on the char Data Type

¢ Internally, characters are represented as integers

* The corresponding value of the character is determined by an
encoding scheme

— For char: American Standard Code for Information Interchange (ASCII)
— Other encoding schemes: Unicode

* You can examine the internal encoding of characters
printf("%d", c);

¢ Good programming practice: Do not rely on the internal values of
the encoding

c=c+ 'A" - "a’'; instead of

C c - 32;

15

Review of Lecture

e What did we learn?
— Increment, relational and logic operators
— Value of assignment expression
— if and for statements
— Character representation
— Special characters, EOF
— Character 1I/0

e Next lecture
— Functions

¢ Assignments for this week
— Read K&R Chapters 1.7, 1.8, 7.2, 7.4, B4
— Weekly challenge: temperature conversion function.c
— Homework: eneel40 1ab@3.pdf, due on Friday at 11:59 pm
— Quiz 3, due on Monday at 11:59 pm

2/9/16

