2. Basic Program Structure
ENEE 140

Prof. Tudor Dumitras

Assistant Professor, ECE
University of Maryland, College Park

http://ter.ps/eneeldo

s,
4,g E’.;

Taw

Today’s Lecture

e Where we’ve been
— Comments & documentation
— First programin C
— Requirements
— Using Eclipse

e Where we’re going today
— Variables
— Constants
— Arithmetic operations
— while loops
— Program design

e Where we’re going next
— Character input/output

2/2/2016



We’ve Seen: Requirements

Before you start programming,
you must understand the requirements

(you must know what the program is supposed to do)

Program Design

e Write a program that counts the number of words from its input
state <- not in a word

While characters are available on the input +—————— Loop

Read character c Input/output

If ¢ is not whitespace

If currently not in a word

Increment word count .
Branching on

state <- in a word a condition
Else (i.e. c is whitespace)
state <- not in a word
Variable

This_is__a sentence.

2/2/2016



Elements of Program Structure

e Variables

— Variables and constants (L2), enumerations (L7)

Branching

— If statement (L3), switch statement (L9), conditional assignment (L9)

e Loops
— while (L2), for (L3), do-while (L9)

Arithmetic operations

— Integer and floating point operations (L2, L5), precision limits (L5)

Data types

— Primitive data types (L2, L3, L6), type conversions (L2, L6)
— Binary representation (L5), bitwise operators (L5)

— Composite data types: struct (L6, L11), union (L11)

Elements of Program Structure — cont’d

¢ Vector data types
— Arrays and strings (L7)
— Multi-dimensional arrays (L12)
— Sorting (L13)

e Input/output

— Reading from standard input and writing to standard output (L1, L3, L4), file
input output (L10, L11)

e Writing complex programs

— Support for modularity: functions (L4), splitting a program into multiple files
(8), variable scope (L8)

— Coding style (L5)
— Defensive programming (L6)
— Testing (L6)

2/2/2016



Designing Programs

Before you start writing C code,
write down the program design
(e.g. the mechanical steps your program will follow)

Variables

e Correspond to memory locations that hold data and that may be
manipulated in your program

Must be declared:
int a; integer variable

float b; floating-point variable (has fractional part)

Must be assigned a value
a=1; assignments change the value

b =1.5; stored in the variable

May be used in expressions

a < 10 comparison test
b=a+ 1; value of arithmetic operation used in
assignment 8

2/2/2016



Assignment vs. Equality Testing

a=a+1; assignment (increment a by 1)

a==a+1 equality testing (result is false)

Arithmetic Operations

+-*/

¢ Integer arithmetic
— Division truncates: the fractional part is discarded

inta=1/ 2; value ofais 0
e Floating-point arithmetic

— Division does not truncate
float b = 1.0 / 2.0; value of b is 0.5

10

2/2/2016



Relational Operators

e Used for making comparisons

== Equal > Greater Than
I= Not Equal <= Less Than or Equal
< Less Than >= Greater Than or Equal

e Work on both integers and floats

* Good programming practice: avoid (in)equality tests with floats!

— Example:

b !=290 if b is a float, try to use <= or >= instead

— Results of floating point operations are imprecise (more on this later)

11

Combining ints and floats in Expressions

e |f an arithmetic operator has integer operands
— Integer arithmetic is used
int a = 1;
int b = a / 2; value of b is 0

e |f an arithmetic operator has at least one floating-point operand
— Floating-point arithmetic is used
float a 1;
float b a/ 2; value of b is 0.5

e Expression type is evaluated before assignment
float b =1 / 2; value of b is 0
float b = 1.0 / 2.9; value of b is 0.5

12

2/2/2016



Symbolic Constants

e Good programming practice: if you have constants in your
program, give them a symbolic name

e Declaring constants

— Modern constant declarations
const float pi = 3.14159;

— Old-school constant declarations (traditionally uppercase)
#define PI 3.14159 no type, no semicolon

e Using constants
float radius = 1;
float circumference = 2 * PI * radius;

13

while loops

* Repeating program statements while a condition holds

while (condition) { condition is tested first

e Example: print “Hello world” 10 times
— You need a variable to count the number of iterations. Let’s call it 1
int i = 0; initialize i
while (1 < 10) { iterate while i is less than 10
printf (“Hello World\n”);

i=i+1; increment i

14

2/2/2016



Review of Lecture

e What did we learn?
— Variables and constants
— Arithmetic operations and comparisons
— while loops

e Next lecture
— Character Input/Output

e Assignments for this week

Review K&R 1.2 and make sure you understand how while loops and
arithmetic operations work

Read K&R Chapters 1.3, 1.5, 2.1, 2.6, 3.1, 3.2
Weekly challenge: word per line.c

Homework: 1ab02 . pdf, due on Friday at 11:59 pm
— Quiz 2, due on Monday at 11:59 pm

15

2/2/2016



