
ENEE 140 Lab 4

Lab instructions

This handout includes instructions for the recitation sessions on Wednesday and Friday. Follow
these instructions to review the usage of the printf function, then submit the homework as
indicated below.

1 printf review

The format string “...” of printf() statement has strict “matching” requirements: (1) the number
of format indicator %’s should match the number of arguments (variable names); (2) the first %
should match the first argument, the second % should match the second argument, and so on; (3)
the data type of an argument should match the corresponding type indicated by the parameter
after the format indicator %. Think about what would happen if there is a mismatch.
Read printf2.c, available in GRACE class public directory under public/labs/week04/, to
predict the output. Then compile the code, run it and analyze the output.
When the field width of the printf() statement is specified, does the - sign counts as one space
when the value is negative? Write a simple program to verify your answer.

1



Spring 2016
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

Homework

Due: February 20 at 11:59 pm.
Write three programs and create one text file by following the instructions below. Submit them
using the following commands:

submit 2016 spring enee 140 AAAA 4 count_char.c
submit 2016 spring enee 140 AAAA 4 data_entry.c
submit 2016 spring enee 140 AAAA 4 printf_questions.txt

Note: you must replace AAA with your own section number (0101, 0102, etc.)

1 Character input

The getchar() function allows you to read from the input one character at a time. Write a program
that reads its input character-by-character, until it encounters the end-of-file (EOF) maker, and
then prints the number of 'a' characters it has read.
Hint: you can use the program on page 19 of the textbook as a starting point.

2 Data entry

Write a complete program called data_entry.c that prompts a student for his/her section, GPA,
course load and credits, and after that prints this information on the console. To do this, implement
five C functions that read and return each of these attributes and invoke these functions from the
main() function.

1. Implement a C function with the following prototype:
int get_section();

This function should start by printing the following message: “Please enter your sec-
tion number (1, 2, or 3):”, then it should wait for the user to type an integer.
The function should return this integer.

2. Implement a C function with the following prototype:
float get_gpa();

This function should start by printing the following message: “What is your cur-
rent GPA?”, then it should wait for the user to type a floating point number.
The function should return this number.

3. Implement a C function with the following prototype:
int get_course_load();

This function should start by printing the following message:
“How many courses are you taking this semester?”, then it should wait for the
user to type an integer.
The function should return this integer.

2



Spring 2016
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

4. Implement a C function with the following prototype:
int get_credits();

This function should start by printing the following message: “How many cred-
its are you taking in total?”, then it should wait for the user to type an integer.
The function should return this integer.

5. In the main() function, invoke these five functions to read all the information from the user,
then print the information in the following tabular format (note that there is one tab after
Section: and all the other attribute names, and the section number should be printed like
this 0102 if the input is 2):
Section: 0103
Current GPA: 3.87
Courses: 4
Credits: 11

Hint. You can start from the template available in GRACE class public directory at
public/labs/week04/data_entry.c.

3 printf questions

1. What is be the output for each of the following printf() statements? Write down your
answers in printf_questions.txt.
printf("%12d \n%12f \n %012d\n",23,3.1416,-23);
printf("%012d \n%*d \n%0*d \n", -23, 12,23, 12,23);
printf("%5.2f \n%.2f \n", 3.14159, 3.14159);
printf("%*.*f \n", 5, 3, 3.14159);
printf("%5.2d \n%10.5s\n", 1, "Hello, World!");
printf("%-15ftest \n%+ftest \n% ftest\n", 3.1416, 3.1416, 3.1416);

Hint. If you don’t know the answers, write a complete C program and include these state-
ments to find out.

2. Use one printf() statement to print out the format indicator %. Try to think of different
ways to do it. For example, if you figure out 3 different ways to do it, your program should
print out %%%.

3. When a real number has a higher precision (3.14159 for example) than the space specified
in the printf statement (4 spaces for example), what will be printed out? The options we
can think are rounded up (3.15), rounded down (3.14), rounded to the nearest (3.14), or
truncated (3.14). Use 3.14159 as an example, if you see output 3.14, you know that rounded
up is not the correct option. But you cannot tell whether it is rounded down, to the nearest,
or truncated. Write multiple printf() statements with different values to show what is the
correct option on our system.
Hint. For each incorrect option, find a value that it will give wrong answer and print out a
message. For example, when you see an output of 3.14 on value 3.14159, you know rounded
up is wrong, so you can print out: not rounded up because 3.14159 = 3.14

3



Spring 2016
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

Reading assignment

K&R Chapters 2.5, 2.7, 2.8, 2.10, B2, B11

Weekly challenge

Write a function that reads integer numbers character-by-character and that returns the corre-
sponding int value (read until end-of-line and ignore all characters that are not digits). Use this
function to read two int values, then print the quotient and remainder that result from dividing the
first value by the second value. Also print the result of dividing the two numbers using the rules
of floating-point division.
You can use the following template (also available in the GLUE class public directory, under
public/challenges/week04/):

/*
* read_divide_ints.c --
*
* Write a function that reads integer numbers character-by-character
* and that returns the corresponding int value (read until end-of-line
* and ignore all characters that are not digits). Use this function to
* read two int values, then print the quotient and remainder that result
* from dividing the first value by the second value. Also print the
* result of dividing the two numbers using the rules of floating-point
* division.
*/

#include <stdio.h>

// Function prototype
int read_int();

int
main()
{

int dividend=0, divisor=0, quotient=0, remainder=0;
float flt_div = 0.0;

printf("Enter the dividend: ");
// Read the dividend by invoking the read_int() function

printf("Enter the divisor: ");
// Read the divisor by invoking the read_int() function

// Perform the arithmetic operations

// Print the results
printf("The quotient is %d\n", quotient);
printf("The remainder is %d\n", remainder);
printf("The result of floating-point division is %.2f", flt_div);

4



Spring 2016
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

return 0;
}

// Function implementation
int
read_int()
{

int num = 0;
int c;

// Read integer number character-by-character
return num;

}

The weekly challenge will not be graded. However, if you manage to solve it, you may submit it
for extra credit. The deadline for submitting your solution to the weekly challenge is Monday at
11:59 pm. To be eligible for extra credit, you must implement correctly all but two of the weekly
challenges. You can submit your program from a GRACE machine using the following command
(replace AAAA with your section number):
submit 2016 spring enee 140 AAAA 1004 read_divide_ints.c

5


	printf review
	Character input
	Data entry
	printf questions

