Introduction to Programming Concepts for Engineers **ENEE 140**

Prof. Tudor Dumitraș

Assistant Professor, ECE University of Maryland, College Park

http://ter.ps/enee140

Introducing Your Instructor

Tudor Dumitraș

Office: AVW 3425

Email: tdumitra@umiacs.umd.edu

Course Website: http://ter.ps/enee140

Office Hours: Tue 2-3 pm

Class Resources

http://elms.umd.edu/

- Modules: lab and lecture materials
- Assignments: information about projects, lab reports and exams
- My grades: all scores (lab reports, projects, exams)
- Piazza: message board for students and instructors
 - Sign up at http://piazza.com/umd/spring2015/enee140
 - Use the message board to ask questions and to receive announcements from the instructors
- The following materials will be posted each week:
 - Lecture notes
 - Lab materials for the current week
 - Lab instructions
 - Homework
 - Challenge for next week
- Project assignments and other materials will be poster throughout the semester

Tools We Will Use

- Eclipse
 - Integrated Development Environment (IDE) for C and other programming languages
 - Provides integrated access to all the tools needed for programming (e.g. code editor, project manager, compiler, debugger)
- GRACE
 - Computer and file sharing environment
 - You will submit all your programming assignments using the submit command on the GRACE machines
 - You can launch Eclipse remotely from the GRACE lab machines (see the handout on "How to Launch Eclipse")
 - Class directory: /afs/glue.umd.edu/class/spring2015/enee/140/0101
 - Code examples posted in the public/ directory

Course Structure

- Weekly reading assignment
 - Covers topics we will discuss during the following lecture
- Weekly challenge
 - One program to implement, posted online
 - You will need to complete the reading assignment in order to solve this challenge
 - Not graded
- Lecture
 - (Occasionally) Provides additional material, not covered in the textbook
 - Clarifies concepts from the reading assignment
 - For example, by solving the weekly challenge
 - If there is something you did not understand, ask questions!
 - Other students may be struggling with the same concepts

Grading

• Homeworks: 20% of your grade

- 10-13 weekly recitation assignments, due every Friday.

Separate from the weekly challenges

• Projects: 40% of your grade

3 programming assignments

- Tentative due dates: March 23, April 13, May 11

• Midterm Exam: 15% of your grade

Tuesday, March 31 in class

• Final Exam: 25% of your grade

- Tuesday, Wednesday, May 20, 10:30am-12:30pm, in class

• Bonus Points: up to 10% of your grade

- <u>Example</u>: answering your classmates' questions in the <u>Discussions</u> section of the web site
- Example: volunteering to help with a Maryland Day activity
- Example: participate in the Bitcamp Hackathon (April 10-12)

ENEE 140 Course Content

- Introduction to Programming Concepts for Engineers
- Hands-on emphasis this is not a pencil-and-paper course
 - You will learn by writing many programs
- Specific things you can expect to learn
 - Programming principles: problem solving, good programming practice
 - Writing correct and maintainable programs
 - The C programming language (most of it)

7

Warning: This is a Challenging Course

- You must complete many programming assignments
- Even if you have some programming experience, you must allow yourself enough time to complete the assignments
 - Especially the 3 programming projects
 - Start early!
- Keep writing code
 - Your skills will improve in time
 - Many people enjoy this

Asking for Help

- Programmers frequently use question-and-answer web sites
 - Example: http://stackoverflow.com/
 - This is usually the quickest way to find the answer to a problem
 - The answers posted may help many programmers
- We will use Piazza for class discussions
 - If you have a technical questions, post it there
 - If you ask me a technical question during office hours, I will first request you
 to summarize the replies to your question on the message board
 - You will receive bonus points for answering questions on the message board
- ! Copying the homeworks, projects, or exam answers of other students constitutes academic dishonesty and will not be tolerated!!

9

Course Syllabus

For more information on the course structure and policies, see the syllabus posted on Elms.

What is Programming?

- Becoming fluent in the language that computers understand
 - Humans are better than computers at doing certain things
 - Computers are better than humans at other things
 - If you can program, you can do both!
- Programming stimulates a way of thinking
 - Helps you acquire aptitudes and skills applicable in many situations
 - Examples: top-down problem solving, thinking at multiple levels of abstraction, thinking of worst-case scenarios to avoid failures
- Programming is a creative process
 - Within certain bounds

11

The C Language

- A low-level language
 - No operations for manipulating composite types (e.g. strings, lists, arrays), no memory management, no input/output facilities
 - The standard library provides some of these facilities
 - A small language
 - Can be learned quickly
- Topics covered in ENEE 140:
 - Data types, type conversions
 - Operators (arithmetic, relational, logic, bitwise, etc.)
 - Flow control (loops, branches)
 - Functions
 - Multi-dimensional arrays
- Topics **not covered** in 140:
 - Recursion
 - Pointers

The Textbook

- B. Kernighan and D. Ritchie, The C Programming Language, 2nd edition, Prentice Hall 1988.
 - Also known as K&R
 - Every serious programmer should have this book in his/her library
 - Not an easy book for beginners (assumes prior programming knowledge)
- If you can program in another language (e.g. Java, Python)
 - Read Chapter 1 for a C tutorial
- If you have no programming experience
 - Don't read Chapter 1 at first (it will confuse you)
 - Instead, read the chapters suggested each week in the lecture
 - I will try to clarify the most important points in the lecture notes
 - See also Steve Summit's excellent notes on the textbook: http://www.eskimo.com/~scs/cclass/krnotes/top.html
 - For this week: read Chapters 1.1, 1.2 and 1.4

ENEE 140 Focuses on Programming Principles

- The lectures will discuss important programming principles
 - Most of these are applicable to any programming language
 - C examples will be provided for illustration
- To learn all the details about the C concepts discussed, you must read additional materials
 - The relevant chapters in the textbook
 - Many Internet resources on C programming (Google is your friend)
 - Eclipse hints (move your mouse over a function)

15

First Principles: Code Quality

- Learning objective: write high-quality code
 - Correctness: the code should do what it's supposed to do (and nothing else!)
 - Maintainability: other programmers should find the code easy to read and to modify
- Other quality attributes that we will not emphasize in ENEE 140
 - Efficiency
 - Robustness
 - Security

Example of Incorrect Code

- Healthcare.gov
 - Launched on October 1st 2013
 - Only 1% of interested people managed to enroll in the first week of operation

- The software was not designed for the 100,000s of concurrent users it attracted after launch
- States continued adding new rules and clarifications after October 1st

17

Requirements

Before you start programming,
you must understand the requirements
(you must know what the program is supposed to do)

Getting Started in C

Use comments to explain what your program is trying to do (the requirements)

19

Review of Lecture

- What did we learn?
 - Requirements before coding
 - First elements of C program syntax
 - Comments and documentation
- Next lecture
 - Basic program structure
- Assignments for this week
 - Read K&R Chapters 1.1, 1.2 and 1.4
 - Weekly challenge: temperature_conversion.c
 - Read lab01.pdf on Elms and follow the lab instructions
 - No homework this week!