
9/13/19

1

4. OS Protection Mechanisms

Prof. Tudor Dumitraș
Assistant Professor, ECE
University of Maryland, College Park

ENEE 657

http://ter.ps/enee657

Today’s Lecture

• Where we’ve been
– Memory corruption exploits

– Cryptography

• Where we’re going today
– Separation of Privileges

– Confinement

– Implementation of OS protection mechanisms

• Where we’re going next
– Next week: Empirical security

2

http://ter.ps/enee657


9/13/19

2

A Note on Pilot Projects

• 2-week project to get initial results and demonstrate feasibility

• Focus on a question that you would like answered
– For your research, out of curiosity …

– Some ideas are available on Piazza

• Post concise (2-3 paragraphs) proposal on Piazza
– Problem statement

– Approach considered for tackling the problem
• Must describe concrete tasks, not vague directions
• Must demonstrate that you’ve thought about the first steps, and you are not 

simply paraphrasing the project idea

– Deadline: one week from today
3

Principle of Least Privilege

• What’s a privilege?
– Ability to access or modify a resource

• System has multiple users
– And multiple components (more on in a bit)

• Principle of Least Privilege
– A user should only have the minimal privileges needed to do his/her work

– Same for system components



9/13/19

3

OS Security Model

• Isolation between processes
– Each process has a user (UID)

• Two processes with same UID have same permissions

– A process may access files, network sockets, ….
• Permission granted according to UID

• Access control matrix [Lampson]

File 1 File 2 File 3 … File n

User 1 read write - - read

User 2 write write write - -

User 3 - - - read read

…

User m read write read write read

Principals

Resources

Implementation Requirements
Key component:    reference monitor
• Mediates requests from applications

– Implements protection policy
– Enforces isolation and confinement

• Must always be invoked:
– Every application request must be mediated

• Tamperproof:
– Reference monitor cannot be killed
– … or if killed, then monitored process is killed too

• Small enough to be analyzed and validated

16



9/13/19

4

Implementation Concept #1: Access Control Lists

• Access control list (ACL)
– Store column of matrix with resource

– Relies on authentication: need to know user

– Delegation: let other process act under current user
• UNIX su/sudo, Windows UAC

17

File 1 File 2 …
User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

ACL: store in 
filesystem metadata

UNIX Access Control Lists

18

UNIX permissions:
rwx rwx rwx
ownr grp othr

• UNIX permissions are designed for a single host that manages a 
local filesystem
– UIDs: local users

– Reference monitor: OS kernel



9/13/19

5

AFS Access Control Lists

19

• The Andrew File System (AFS) is a distributed filesystem
– Precursor to cloud storage systems

– Users divided into realms (e.g. UMD, CMU)

– Reference monitor: file server

AFS permissions

Set-id Bits on Executable Unix File

• Three set-id bits
– Setuid – set EUID of process to ID of file owner

– Setgid – set EGID of process to GID of file

– Sticky
• Off: if user has write permission on directory, can rename or remove files, even 

if not owner
• On: only file owner, directory owner, and root can rename or remove file in the 

directory

• Why needed?
grace1:~/enee757: ls -al /usr/bin/passwd
-rwsr-xr-x. 1 root root 30768 Feb 17  2012 /usr/bin/passwd
grace1:~/enee757: ls -al /etc/passwd
-r--r--r-- 1 root root 3521596 Sep  4 18:24 /etc/passwd



9/13/19

6

The Confused Deputy Problem 

• Say I want to write a script for students to submit assignments
– submit is invoked by students, compiles and runs tests on the assignment, 

and places the results in a folder that I can read

• Say I also want the script to maintain a log file, for debugging
– submit runs with the student’s access control permissions

– Different students cannot access each others’ submissions
– I want to keep the log in the instructor/ folder

– How can submit update the log file?

21

grace1:~/enee757: ls
instructor/
submit/student1
submit/student2

My folder (no student access)
Students can write

The Confused Deputy Problem – cont’d
[Hardy, 1988]

• I could make submit setuid-instructor
– At runtime, the script acquires the permissions to write in instructor/
– submit can update the logfile

• Students are still unable to access files in instructor/ directly 
– Can you see a problem with this?

• submit compiles and executes programs that students wrote!
– A student may submit a program that modifies files in instructor/

(say, the grade records)
• Or exploit a vulnerability in my submit program to execute code

• The problem is that setuid grants access to all the files I can write 
(ambient authority)
– I only wanted to grant write access to the log file
– But this cannot be expressed in the ACL model!

22



9/13/19

7

Implementation Concept #2: Capabilities

• Capabilities
– User holds a ticket for each resource

– Two variations
• Store row of matrix with user, under OS control
• Unforgeable ticket in user space

– Reference monitor checks ticket: does not need to know identify of 
user/process

– Delegation: Process can pass capability at run time

23

File 1 File 2 …
User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

Capability: give user 
unforgeable ticket

Role-Based Access Control

Users Roles (also known as Groups) Resources

engineering

marketing

human res

Server 1

Server 3

Server 2

• Role examples: Administrator, PowerUser, User, Guest
– Assign permissions to roles; each user gets permission
– Advantage: users change more frequently than roles



9/13/19

8

The Confinement Principle

• We’ve talked about file access control 
– What about other resources?

• We often need to run buggy/unstrusted code:

– programs from untrusted Internet sites:

• apps,   extensions,   plug-ins,   codecs for media player

– exposed applications:    pdf viewers,  outlook

– legacy daemons:   sendmail,  bind

– honeypots

Goal:    if application “misbehaves”  ⇒ kill it

Monolithic Design

System

Network

User input

File system

Network

User device

File system



9/13/19

9

Monolithic Design

System

Network

User input

File system

Network

User device

File system

Monolithic Design

System

Network

User input

File system

Network

User device

File system



9/13/19

10

Component Design

Network

User input

File system

Network

User device

File system

Component Design

Network

User input

File system

Network

User device

File system



9/13/19

11

Component Design

Network

User input

File system

Network

User device

File system

Implementing Confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

– Hardware:   run application on isolated hw (air gap)

air gap network 1Network 2

app 1 app 2



9/13/19

12

Implementing Confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

– Virtual machines:   isolate OS’s on a single machine  

Virtual Machine Monitor  (VMM)

OS1 OS2

app1 app2

Implementing Confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

– Process:     System Call Interposition
Isolate a process in a single operating system

Operating System

process 2

process 1



9/13/19

13

System Call Interposition
[Goldberg+, USENIX Security’96]

• Goal: monitor sys calls and block unauthorized calls
• Implemented with Linux ptrace:    process tracing

process calls:     ptrace (… ,  pid_t pid ,  …)

and wakes up when  pid makes sys call

Challenge: how to establish policy for which calls to block?

OS Kernel

monitored
application
(browser)

monitor

user space

open(“/etc/passwd”,  “r”)

Measuring Impact of Confinement
[Nayak+, RAID 2014]

37

0.4

0.6

0.8

1.0

0 10 20 30 40 50
Months since product installed

“N
o 

ex
pl

oi
t” 

pr
ob

ab
ilit

y

Adobe Reader 10, 11

Adobe Reader 7Adobe Reader 8

Adobe Reader 9

Introduction of 
protected mode 

(sandbox)



9/13/19

14

Confinement: Summary
• Many sandboxing techniques:

Physical air gap,   Virtual air gap (VMMs),
System call interposition,  Software Fault isolation
Application specific (e.g. Javascript in browser)

• Often complete isolation is inappropriate

– Apps need to communicate through regulated interfaces

• Hardest aspects of sandboxing:

– Specifying policy:    what can apps do and not do
– Preventing covert channels

Review of Lecture

• What did we learn?
– Principals, reference monitor, principle of least privilege

– ACLs, capabilities, confused deputy

– Sandboxing

– Statistical inference

• Sources
– Dan Boneh, John Mitchell, Vitaly Shmatikov

• What’s next?
– Empirical security
– Reading: Setuid Demystified

39


