# **3. Cryptography Review** ENEE 657

**Prof. Tudor Dumitraş** Assistant Professor, ECE University of Maryland, College Park



2

http://ter.ps/enee657

### **Today's Lecture**

- Where we've been
  - Introduction to computer security
  - Memory corruption exploits
- Where we're going today
  - Cryptography review
- Where we're going next
  - Homework 1 due on Friday!
  - OS protection mechanisms















| Collision Resistance                                                                                                                                 |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| <ul> <li>Should be hard to find x≠x' such that h(x)=h(x')</li> </ul>                                                                                 |                        |
| <ul> <li>Birthday paradox</li> </ul>                                                                                                                 |                        |
| <ul> <li>Let T be the number of values x,x',x'' we need to look at before finding<br/>the first pair x≠x' s.t. h(x)=h(x')</li> </ul>                 |                        |
| <ul> <li>Assuming h is random, what is the probability that we find a repetition<br/>after looking at T values?</li> <li>O(T<sup>2</sup>)</li> </ul> |                        |
| – Total number of pairs?                                                                                                                             |                        |
| <ul> <li>n = number of bits in the output of hash function</li> </ul>                                                                                | O(2 <sup>n</sup> )     |
| – Conclusion:                                                                                                                                        |                        |
| <ul> <li>Brute-force collision search is O(2<sup>n/2</sup>), <u>not</u> O(2<sup>n</sup>)</li> </ul>                                                  | $T \approx O(2^{n/2})$ |
| <ul> <li>For SHA256, this means O(2<sup>128</sup>) vs. O(2<sup>256</sup>)</li> </ul>                                                                 |                        |
|                                                                                                                                                      |                        |
|                                                                                                                                                      | 11                     |

# **One-Way vs. Collision Resistance**

- One-wayness does not imply collision resistance
  - Suppose g() is one-way
  - Define h(x) as g(x') where x' is x except the last bit
    - h is one-way (cannot invert h without inverting g)
    - Collisions for h are easy to find: for any x, h(x0)=h(x1)
- Collision resistance does not imply one-wayness
  - Suppose g() is collision-resistant
  - Define h(x) to be 0x if x is (n-1)-bit long, else lg(x)
    - Collisions for h are hard to find: if y starts with 0, then there are no collisions; if y starts with 1, then must find collisions in g
    - h is not one way: half of all y's (those whose first bit is 0) are easy to invert (how?), thus random y is invertible with  $p \ge \frac{1}{2}$













































37

# **Popular Digital Signature Schemes**

- RSA signatures
  - Signing and decryption are the same mathematical operation
  - Verification and encryption are the same mathematical operation
  - Message must be hashed and padded
- DSA (digital signature algorithm) signatures
  - U.S. government standard (1991-94)
  - Modification of the ElGamal signature scheme (1985)
  - Security of DSA requires hardness of discrete log problem
    - Hard to extract x (private key) from g<sup>x</sup> mod p (public key)
  - If the same message is signed twice, signatures are different
    - Each signature is based in part on random secret k
    - Secret k must be different for each signature!









# Additional References

- Jonathan Katz's Coursera class: https://www.coursera.org/course/cryptography
- KPS chapters 2-6

44

#### Assignment for Wednesday

- Using <a href="http://keybase.io">http://keybase.io</a> for proving your identity online
  - 1. Create an account on Keybase. Use your hacker handle.
  - 2. Use Keybase to prove your identity on an online application (Twitter, Reddit, Github, etc.)
  - 3. Post a security analysis of Keybase on our Piazza forum
  - What security properties does Keybase provide?
  - What assumptions does it make about the adversary?
  - What are some potential weaknesses of the system? How would you attack it?
  - 4. Read posts from your classmates and discuss do you disagree with their analysis?

#### 45

#### **Review of Lecture**

- What did we learn?
  - Hash functions: one-way, collision resistant, weakly collision resistant
  - Message authentication codes
  - Security properties: confidentiality, integrity, authentication
  - Symmetric crypto
  - Public key crypto
  - Common ways to misuse crypto APIs
- Sources
  - Vitaly Shmatikov
- What's next?
  - OS protection mechanisms

46