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2. Memory Corruption Exploits

Prof. Tudor Dumitraș
Assistant Professor, ECE
University of Maryland, College Park

ENEE 657

Today’s Lecture

• Where we’ve been
– Intro to security

• Where we’re going today
– Security principles (discuss reading assignment)
– Memory corruption exploits

– Homework #1

• Where we’re going next
– No lecture on Monday (Labor Day)

– Cryptography review (Wednesday)
– Homework #1 due (Friday)

2



8/30/19

2

Logistics

• Choose a hacker handle
– Examples of famous hackers:

• Aleph One (buffer overflow exploits)
• Solar Designer (return-to-libc exploits)
• Dark Avenger (polymorphic malware)
• th3j35t3r (https://twitter.com/th3j35t3r) 

– Sign up on our Piazza message board with your new handle
• Don’t use your real name
• Sign up link at http://ter.ps/enee657

• Reading assignments
• Read papers, but don’t post critiques (for now)
• More details on critiques later
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Reading: J. Saltzer & M. Schroeder, SOSP’73

Design Principles for Secure Systems

https://twitter.com/th3j35t3r
http://ter.ps/enee657
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Memory Corruption

Recall: Correctness versus Security

• System correctness: system satisfies specification
– For reasonable input, get reasonable output

• System security: system properties preserved in face of attack
– For unreasonable input, output not completely disastrous

• Main difference: intelligent adversary trying to subvert system 
and to evade defensive techniques 
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• A buffer is a data storage area inside computer memory (stack or 
heap)
– Intended to hold pre-defined amount of input data
– The attacker controls the inputs

• What can the attacker do?
– If the buffer is filled with executable code, the victim’s machine may be tricked 

into executing it (remote code execution exploit)
• First major exploit: 1988 Internet worm (more on this later)

– Or it may reveal parts of the computer’s memory (information disclosure 
exploit)
• Recent example: Heartbleed (more on this later)

– Attack can exploit any memory operation
• Pointer assignment, format strings, memory allocation and de-allocation, function 

pointers, calls to library routines via offset tables …

Buffer Errors
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Buffer Errors – Rate of Discovery
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Source: National Vulnerability Database (NVD)
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What You Need to Know

• Understand C functions and the stack

• Know how system calls are made

• Know the exec() system call

• Know the CPU and OS on the target machine
– Little endian vs. big endian   (x86 vs. Motorola)

– Stack frame structure     (Unix vs. Windows)

– The homework uses x86 (32 bit) running Linux (Ubuntu)
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Stack Frames

call arguments

return address

saved EBP

local variables

Stack pointer
SP

Stack
Growth

high address

low address
callee saved registers

Stack “top”

…

Frame pointer
EBP

Caller’s
frame

Current
frame

Stack “bottom”
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C Function Call and Return

• When a C function is called
– A new stack frame is created

• Push arguments, return address, EBP of caller frame onto stack

– Make EBP point to the base of the new frame
– Jump to the start of the function 

• The function allocates space for local variables by increasing SP

• When a C function returns 
– SP <- EBP
– Pop the saved frame pointer into EBP

– Jump to the return address
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What are Buffer Overflows?

void func(char *str) {
char buf[128];

strcpy(buf, str);
do-something(buf);

}

Suppose a web server contains this function:

func()’s stack frame

argument:   *str

return address

saved EBP

char buf[128]

SP

EBP stack
growth

buf
growth

Allocate local buffer
(128 bytes reserved on stack)

Copy argument into local buffer

-4

-128

+4

13



8/30/19

7

What are Buffer Overflows?

void func(char *str) {
char buf[128];

strcpy(buf, str);
do-something(buf);

}

What happens when str is 136 bytes long?

After strcpy:

argument:   str

return address

saved EBP

char buf[128]

SP

EBP
-4

-128

+4

Problem:  
no length checking in  strcpy()

14

• Executable attack code is stored on stack, inside 
the buffer containing attacker’s string 
– Stack memory is supposed to contain only data, but…

• The buffer overflow must do two things:
– Hijack the program control 

• Example: overwrite the value in the RET position to point to the beginning of 
attack assembly code in memory

• If you return outside the valid address space, the application will crash with a 
segmentation violation (SEGFAULT)

– Ensure that the attack code is stored somewhere in memory
• Example: put it in the buffer
• You must correctly guess in which stack position his buffer will be when the 

function is called
• You can also achieve this goal without injecting code (more on this later)

Basic Stack-Based Overflow
[Aleph One – Smashing the Stack for Fun and Profit]
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char buf[128]

return address

Basic Stack Exploit

Suppose  *str is such that after  
strcpy() the stack looks like this:

Attack code:    exec(“/bin/sh”)

When   func() exits,  the attacker 
gets a shell!

Note:  the attack code runs in stack.

(known as “shellcode”)

Shellcode

low

high

buf
growth
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The NOP Sled

Problem:   how does the attacker 
determine the return address?

Solution:   NOP sled

• Guess approximate stack state 
when func() is called

• Insert many NOP (No OPeration) 
instructions before the shellcode:

nop
xor eax,eax
inc ax; dec ax
…

• Jump somewhere in the middle NOP 

char buf[128]

return address

Shellcode

low

high

NOP Sled

buf
growth
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Some Complications

• The buffer should not contain the ‘\0’  character (why?)
– That means that you cannot have a 0 byte in the shellcode or return address

– Inspect shellcode and replace with equivalent instructions w/o a 0 byte

– Set return address to some place in the NOP sled w/o a 0 byte

• Overflow should not crash program before  func() exits
– Stack layouts vary across different platforms

– Make sure you don’t copy too many bytes into buf[] and run of the valid 
address space
• Make sure that your attack input is a properly terminated  string (has ‘\0’ at the end)

– Use a NOP sled

– You can copy the jump target multiple times if unsure of the offset
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What If You Cannot Inject Code on the Stack?
• Over the years, several defenses against buffer overflow have 

been proposed
– Examples: ensure integrity of stack frames (“stack canaries”), randomize 

memory layout (ASLR), make stack non-executable (DEP, NX bit)
– These generally target the two necessary steps for buffer overflow

• Hijack the program control 
– Overwrite the value in the RET position to point to the beginning of 

attack assembly code in memory

• Ensure that the attack code is stored somewhere in memory
– Put it in the buffer
– Jump to code (already present in memory) that does what you want

(e.g. the C library functions)
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Return-to-libc Attack

• Jump to a function in libc

– system() invokes a UNIX command 
(e.g. /bin/sh)

– You can put the command on the stack

• Limitations
– 0 bytes to terminate command strings

– Some functions take args. from registers
(why is this a limitation?)

– Overcome by return-oriented programming (more on this later) 20

char buf[128]

return address

low

high

buf
growth

“/bin/sh”

int
system(const char *command) 
{

…
}

What If You Cannot Smash the Return Address?

• Hijack the program control 
– Overwrite the value in the RET position to point to the beginning of 

attack assembly code in memory

– Overwrite other things that will ultimately give you control (e.g. EBP, 
function pointers, exception handlers)

• Ensure that the attack code is stored somewhere in memory
– Put it in the buffer
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• Home-brewed range-checking string copy
void notSoSafeCopy(int *input) {

int buffer[512]; int i; 

for (i=0; i<=512; i++)
buffer[i] = input[i]; 

}
void main(int argc, char *argv[]) {

if (argc==2) 
notSoSafeCopy((int*) argv[1]);

}

• 1-int overflow: can’t change the return address, but can change 
saved pointer to previous stack frame

– On little-endian architecture, make it point into buffer
– The caller’s return address will be read from the buffer!

Off-By-One Overflow

This will copy 513
integers into
buffer. Oops!
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args
return address
EBP
buffer               (buf)

Attack code

Fake return 
address
Fake EBP

Smash the Frame Pointer

Change the caller’s saved frame
pointer to point to attacker-controlled 
memory. Caller’s return address will be 
read from this memory.

Arranged like a 
real frame
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Fundamental Causes for Basic Stack Smashing Exploits

• C strings are nul-terminated, rather than specifying the bound
– Programmer must check the range manually
– Many unsafe functions in the standard C library

• strcpy(char *dest, const char *src)
• strcat(char *dest, const char *src)
• gets(char *s)
• scanf(const char *format, …)
• printf(const char *format, …) 

• Stacks grow down and arrays grow up

• Von Neumann architecture: program and data in same memory
– In addition, for x86: no distinction between executable and readable pages
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Where Can We Find Buffer Overflows?
• Most operating systems are written in C 

– Internet worms:

• (1988) Morris worm
• (2000) Code Red worm
• (2008) Conficker
• (2017) WannaCry

• Web browsers
– (2007)  Overflow in Windows animated cursors (ANI).     LoadAniIcon()

• Security software
– (2005)  Overflow in Symantec Virus Detection

test.GetPrivateProfileString "file", [long string]

• Cars, embedded devices
25
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How Exploits Are Used Today
[Grier et al, CCS 2012]

• Writing successful exploits today requires specialized skills
– On underground markets, you can buy specialized services and products 

that provide this function

• Exploit kits
– Packaged software with a collection of exploits 

– Code for profiling the target and deliver the right exploit

• Exploit services
– Web sites that exploit vulnerabilities in Web browsers

• Drive-by-downloads (more on this later)
– Just redirect your victims to those Web sites
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Review of Lecture

• What did we learn?
– Design principles of secure systems

– Memory corruption attacks: return address, shellcode, stack frames

• Sources
– Vitaly Shmatikov, Dan Boneh

• What’s next?
– Cryptography review

– First homework due next Friday
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