2. Memory Corruption Exploits ENEE 657

Prof. Tudor Dumitraş Assistant Professor, ECE University of Maryland, College Park

Today's Lecture

- Where we've been
 - Intro to security
- Where we're going today
 - Security principles (discuss reading assignment)
 - Memory corruption exploits
 - Homework #1
- Where we're going next
 - No lecture on Monday (Labor Day)
 - Cryptography review (Wednesday)
 - Homework #1 due (Friday)

3

Logistics

- Choose a hacker handle
 - Examples of famous hackers:
 - Aleph One (buffer overflow exploits)
 - Solar Designer (return-to-libc exploits)
 - Dark Avenger (polymorphic malware)
 - th3j35t3r (https://twitter.com/th3j35t3r)
 - Sign up on our Piazza message board with your new handle
 - Don't use your real name
 - Sign up link at http://ter.ps/enee657

• Reading assignments

- Read papers, but don't post critiques (for now)
- More details on critiques later

Buffer Errors

- A buffer is a data storage area inside computer memory (stack or heap)
 - Intended to hold pre-defined amount of input data
 - The attacker controls the inputs
- What can the attacker do?
 - If the buffer is filled with executable code, the victim's machine may be tricked into executing it (remote code execution exploit)
 - First major exploit: 1988 Internet worm (more on this later)
 - Or it may reveal parts of the computer's memory (information disclosure exploit)
 - Recent example: Heartbleed (more on this later)
 - Attack can exploit any memory operation
 - Pointer assignment, format strings, memory allocation and de-allocation, function pointers, calls to library routines via offset tables ...

C Function Call and Return

- When a C function is called
 - A new stack frame is created
 - Push arguments, return address, EBP of caller frame onto stack
 - Make EBP point to the base of the new frame
 - Jump to the start of the function
 - The function allocates space for local variables by increasing SP
- When a C function returns
 - SP <- EBP
 - Pop the saved frame pointer into EBP
 - Jump to the return address

How Exploits Are Used Today [Grier et al, CCS 2012]

- Writing successful exploits today requires specialized skills
 - On underground markets, you can buy specialized services and products that provide this function
- Exploit kits
 - Packaged software with a collection of exploits
 - Code for profiling the target and deliver the right exploit
- Exploit services
 - Web sites that exploit vulnerabilities in Web browsers
 - Drive-by-downloads (more on this later)
 - Just redirect your victims to those Web sites

Review of Lecture

- What did we learn?
 - Design principles of secure systems
 - Memory corruption attacks: return address, shellcode, stack frames
- Sources
 - Vitaly Shmatikov, Dan Boneh
- What's next?
 - Cryptography review
 - First homework due next Friday