
8/30/19

1

2. Memory Corruption Exploits

Prof. Tudor Dumitraș
Assistant Professor, ECE
University of Maryland, College Park

ENEE 657

Today’s Lecture

• Where we’ve been
– Intro to security

• Where we’re going today
– Security principles (discuss reading assignment)
– Memory corruption exploits

– Homework #1

• Where we’re going next
– No lecture on Monday (Labor Day)

– Cryptography review (Wednesday)
– Homework #1 due (Friday)

2

8/30/19

2

Logistics

• Choose a hacker handle
– Examples of famous hackers:

• Aleph One (buffer overflow exploits)
• Solar Designer (return-to-libc exploits)
• Dark Avenger (polymorphic malware)
• th3j35t3r (https://twitter.com/th3j35t3r)

– Sign up on our Piazza message board with your new handle
• Don’t use your real name
• Sign up link at http://ter.ps/enee657

• Reading assignments
• Read papers, but don’t post critiques (for now)
• More details on critiques later

3

5

Reading: J. Saltzer & M. Schroeder, SOSP’73

Design Principles for Secure Systems

https://twitter.com/th3j35t3r
http://ter.ps/enee657

8/30/19

3

6

Memory Corruption

Recall: Correctness versus Security

• System correctness: system satisfies specification
– For reasonable input, get reasonable output

• System security: system properties preserved in face of attack
– For unreasonable input, output not completely disastrous

• Main difference: intelligent adversary trying to subvert system
and to evade defensive techniques

7

8/30/19

4

• A buffer is a data storage area inside computer memory (stack or
heap)
– Intended to hold pre-defined amount of input data
– The attacker controls the inputs

• What can the attacker do?
– If the buffer is filled with executable code, the victim’s machine may be tricked

into executing it (remote code execution exploit)
• First major exploit: 1988 Internet worm (more on this later)

– Or it may reveal parts of the computer’s memory (information disclosure
exploit)
• Recent example: Heartbleed (more on this later)

– Attack can exploit any memory operation
• Pointer assignment, format strings, memory allocation and de-allocation, function

pointers, calls to library routines via offset tables …

Buffer Errors

8

Buffer Errors – Rate of Discovery

9

Source: National Vulnerability Database (NVD)

8/30/19

5

What You Need to Know

• Understand C functions and the stack

• Know how system calls are made

• Know the exec() system call

• Know the CPU and OS on the target machine
– Little endian vs. big endian (x86 vs. Motorola)

– Stack frame structure (Unix vs. Windows)

– The homework uses x86 (32 bit) running Linux (Ubuntu)

10

Stack Frames

call arguments

return address

saved EBP

local variables

Stack pointer
SP

Stack
Growth

high address

low address
callee saved registers

Stack “top”

…

Frame pointer
EBP

Caller’s
frame

Current
frame

Stack “bottom”

11

8/30/19

6

C Function Call and Return

• When a C function is called
– A new stack frame is created

• Push arguments, return address, EBP of caller frame onto stack

– Make EBP point to the base of the new frame
– Jump to the start of the function

• The function allocates space for local variables by increasing SP

• When a C function returns
– SP <- EBP
– Pop the saved frame pointer into EBP

– Jump to the return address

12

What are Buffer Overflows?

void func(char *str) {
char buf[128];

strcpy(buf, str);
do-something(buf);

}

Suppose a web server contains this function:

func()’s stack frame

argument: *str

return address

saved EBP

char buf[128]

SP

EBP stack
growth

buf
growth

Allocate local buffer
(128 bytes reserved on stack)

Copy argument into local buffer

-4

-128

+4

13

8/30/19

7

What are Buffer Overflows?

void func(char *str) {
char buf[128];

strcpy(buf, str);
do-something(buf);

}

What happens when str is 136 bytes long?

After strcpy:

argument: str

return address

saved EBP

char buf[128]

SP

EBP
-4

-128

+4

Problem:
no length checking in strcpy()

14

• Executable attack code is stored on stack, inside
the buffer containing attacker’s string
– Stack memory is supposed to contain only data, but…

• The buffer overflow must do two things:
– Hijack the program control

• Example: overwrite the value in the RET position to point to the beginning of
attack assembly code in memory

• If you return outside the valid address space, the application will crash with a
segmentation violation (SEGFAULT)

– Ensure that the attack code is stored somewhere in memory
• Example: put it in the buffer
• You must correctly guess in which stack position his buffer will be when the

function is called
• You can also achieve this goal without injecting code (more on this later)

Basic Stack-Based Overflow
[Aleph One – Smashing the Stack for Fun and Profit]

15

8/30/19

8

char buf[128]

return address

Basic Stack Exploit

Suppose *str is such that after
strcpy() the stack looks like this:

Attack code: exec(“/bin/sh”)

When func() exits, the attacker
gets a shell!

Note: the attack code runs in stack.

(known as “shellcode”)

Shellcode

low

high

buf
growth

16

The NOP Sled

Problem: how does the attacker
determine the return address?

Solution: NOP sled

• Guess approximate stack state
when func() is called

• Insert many NOP (No OPeration)
instructions before the shellcode:

nop
xor eax,eax
inc ax; dec ax
…

• Jump somewhere in the middle NOP

char buf[128]

return address

Shellcode

low

high

NOP Sled

buf
growth

17

8/30/19

9

Some Complications

• The buffer should not contain the ‘\0’ character (why?)
– That means that you cannot have a 0 byte in the shellcode or return address

– Inspect shellcode and replace with equivalent instructions w/o a 0 byte

– Set return address to some place in the NOP sled w/o a 0 byte

• Overflow should not crash program before func() exits
– Stack layouts vary across different platforms

– Make sure you don’t copy too many bytes into buf[] and run of the valid
address space
• Make sure that your attack input is a properly terminated string (has ‘\0’ at the end)

– Use a NOP sled

– You can copy the jump target multiple times if unsure of the offset

18

What If You Cannot Inject Code on the Stack?
• Over the years, several defenses against buffer overflow have

been proposed
– Examples: ensure integrity of stack frames (“stack canaries”), randomize

memory layout (ASLR), make stack non-executable (DEP, NX bit)
– These generally target the two necessary steps for buffer overflow

• Hijack the program control
– Overwrite the value in the RET position to point to the beginning of

attack assembly code in memory

• Ensure that the attack code is stored somewhere in memory
– Put it in the buffer
– Jump to code (already present in memory) that does what you want

(e.g. the C library functions)

19

8/30/19

10

Return-to-libc Attack

• Jump to a function in libc

– system() invokes a UNIX command
(e.g. /bin/sh)

– You can put the command on the stack

• Limitations
– 0 bytes to terminate command strings

– Some functions take args. from registers
(why is this a limitation?)

– Overcome by return-oriented programming (more on this later) 20

char buf[128]

return address

low

high

buf
growth

“/bin/sh”

int
system(const char *command)
{

…
}

What If You Cannot Smash the Return Address?

• Hijack the program control
– Overwrite the value in the RET position to point to the beginning of

attack assembly code in memory

– Overwrite other things that will ultimately give you control (e.g. EBP,
function pointers, exception handlers)

• Ensure that the attack code is stored somewhere in memory
– Put it in the buffer

21

8/30/19

11

• Home-brewed range-checking string copy
void notSoSafeCopy(int *input) {

int buffer[512]; int i;

for (i=0; i<=512; i++)
buffer[i] = input[i];

}
void main(int argc, char *argv[]) {

if (argc==2)
notSoSafeCopy((int*) argv[1]);

}

• 1-int overflow: can’t change the return address, but can change
saved pointer to previous stack frame

– On little-endian architecture, make it point into buffer
– The caller’s return address will be read from the buffer!

Off-By-One Overflow

This will copy 513
integers into
buffer. Oops!

22

args
return address
EBP
buffer (buf)

Attack code

Fake return
address
Fake EBP

Smash the Frame Pointer

Change the caller’s saved frame
pointer to point to attacker-controlled
memory. Caller’s return address will be
read from this memory.

Arranged like a
real frame

23

8/30/19

12

Fundamental Causes for Basic Stack Smashing Exploits

• C strings are nul-terminated, rather than specifying the bound
– Programmer must check the range manually
– Many unsafe functions in the standard C library

• strcpy(char *dest, const char *src)
• strcat(char *dest, const char *src)
• gets(char *s)
• scanf(const char *format, …)
• printf(const char *format, …)

• Stacks grow down and arrays grow up

• Von Neumann architecture: program and data in same memory
– In addition, for x86: no distinction between executable and readable pages

24

Where Can We Find Buffer Overflows?
• Most operating systems are written in C

– Internet worms:

• (1988) Morris worm
• (2000) Code Red worm
• (2008) Conficker
• (2017) WannaCry

• Web browsers
– (2007) Overflow in Windows animated cursors (ANI). LoadAniIcon()

• Security software
– (2005) Overflow in Symantec Virus Detection

test.GetPrivateProfileString "file", [long string]

• Cars, embedded devices
25

8/30/19

13

How Exploits Are Used Today
[Grier et al, CCS 2012]

• Writing successful exploits today requires specialized skills
– On underground markets, you can buy specialized services and products

that provide this function

• Exploit kits
– Packaged software with a collection of exploits

– Code for profiling the target and deliver the right exploit

• Exploit services
– Web sites that exploit vulnerabilities in Web browsers

• Drive-by-downloads (more on this later)
– Just redirect your victims to those Web sites

26

Review of Lecture

• What did we learn?
– Design principles of secure systems

– Memory corruption attacks: return address, shellcode, stack frames

• Sources
– Vitaly Shmatikov, Dan Boneh

• What’s next?
– Cryptography review

– First homework due next Friday

28

