
8/27/19

1

Computer Security

Prof. Tudor Dumitraș
Associate Professor, ECE
University of Maryland, College Park

ENEE 657

2

What are the odds
that you will get hacked

tomorrow?

8/27/19

2

How Vulnerable Are You To Malware?
• We systematically measured amount of malware on

4 million hosts in 44 countries
[The Global Cyber-Vulnerability Report, Springer, 2015]

• Top 5:
– South Korea, India, Saudi Arabia, China, Malaysia, Russia

• United States: 10th safest

Range of adversary capabilities Perceived vs. objective security

3

Understanding Computer Security

Machine
Learning

Security
Measurements

Inference and
Prediction

4

(Adversarial)

8/27/19

3

About Your Instructor

Tudor Dumitraș
Office: IRB 5228
Email: tdumitra@umiacs.umd.edu
Course Website: http://ter.ps/enee657

5

My Story

6

• 2000s: Carnegie Mellon University
– Ph.D. in distributed systems

• 2010: Symantec Research Labs

• Since 2013: UMD
– Maryland Cybersecurity

Center (MC2)

http://ter.ps/enee657

8/27/19

4

ENEE 657 in a Nutshell

• ENEE 657 is a graduate-level security course
– Learn by reading, explaining and doing

– Project oriented: develop to a degree that would merit publication in one
of the workshops associated with the USENIX Security Symposium 2020

• Aims to prepare you for research in security
– Not a tutorial or comprehensive course on these topics

– Instead, exploring a range of topics to illustrate some of the current
research challenges

– Targeted at students who want to conduct research in the area or who
are more generally interested in security as it applies to their fields

7

Who Can You Trust?

Workstation

O/S

Application NFS Server

O/S

Server
Network
channel

RequestI wonder
what Tudor’s

SSN is …

Keyboard/display
channel

• Where is the request “from”?
– The user? The workstation? The application? The network channel?

All of the above?

– Which of these actors do you trust? 8

8/27/19

5

Ken Thompson

ACM Turing Award, 1983
9

“Reflections on Trusting Trust”

• What software can we trust?

• Example: any operating system includes a program
checking whether users are allowed to log in
– "login" or "su" in Unix
– Is the login binary from Windows/Mac OS/Ubuntu/etc. trustworthy?
– Does it send your password to someone?
– Does it have backdoor for a “special” remote user?

• Can't trust the binary, so check source code or write your own,
recompile

• Does this solve problem?
10

8/27/19

6

“Reflections on Trusting Trust” – cont’d

• Who wrote the compiler?

• Compiler looks for source code that looks like the login
process, inserts backdoor into it

• Ok, inspect the source code of the compiler… Looks good?
Recompile the compiler!

• Does this solve the problem?

11

“Reflections on Trusting Trust” – cont’d

• The UNIX login program is compiled by a C compiler
– The C compiler was also compiled by an (older) C compiler

• Aside: how does the compiler handle special characters?
…
c = next();
if(c != '\\')

return(c);
c = next();
if(c == '\\')

return('\\');
if(c== 'n')

return('\n');
if(c == 'v')

return(11);
…

…
c = next();
if(c != '\\')

return(c);
c = next();
if(c == '\\')

return('\\');
if(c== 'n')

return('\n');
if(c == 'v')

return('\v');
…When adding a new special character to the

C language, must specify the character code

In future versions of
the compiler: use
the special character

12

8/27/19

7

“Reflections on Trusting Trust” – cont’d

• The compiler is written in C …
compiler(S) {

if (match(S, "login-pattern")) {

compile (login-backdoor)

return
}

if (match(S, "compiler-pattern")) {

compile (compiler-backdoor)
return

}

.... /* compile as usual */

}

In future versions of
the compiler: the
backdoor no longer
appears in the source
code

13

“The moral is obvious. You can't trust code that
you did not totally create yourself. (Especially

code from companies that employ people like me.)”

“Reflections on Trusting Trust” – cont’d

14

8/27/19

8

Range of Adversary Capabilities

• Attack targets: clients, servers, networks, applications, users

• Example attack methods:
– End-hosts (or devices): install malware

– LAN: read, replay, insert, delete, block messages

– Internet: send spam, conduct distributed denial of service attacks
– Applications: exploit vulnerabilities

– Data: steal/corrupt secret data, plant invalid data

– Users: conduct social engineering attacks

15

Aside: Is Hardware Secure?

• Malicious device firmware
– Some HW functionality is actually implemented in SW

– Do you trust device firmware to come from legitimate vendor?

– Is firmware free of vulnerabilities?

• Malicious hardware
– HW is as complex as SW and is designed using SW tools

– Do you know where each HW component comes from?

– Can you authenticate your HW?

– Could the CAD tools have introduced a backdoor (HW trojan)?

16

8/27/19

9

Cybercrime in the Real World

• Botnets
– Worker bots running in the background on millions of compromised hosts

– Bot master sending instructions to worker bots via command & control nodes

– Possible instructions: propagate, send spam, conduct DDoS, mine Bitcoin

• Pay-per-Install (PPI)
– “Affiliate” programs rewarding miscreants for installing malware on end-hosts

– Useful for bootstrapping botnets, sending spam, staging denial of service
attacks, performing click fraud, hosting scam websites

• Distributed Denial of Service (DDoS)
– Instruct a botnet to direct a large amount of traffic to the target

– Leverage protocols that can amplify traffic (e.g. NTP, DNS)
21

Desirable Security Properties

• Authenticity
• Confidentiality

• Integrity

• Availability
• Accountability and non-repudiation

• Access control

• Privacy

…

25

8/27/19

10

Correctness versus Security

• System correctness: system satisfies specification
– For reasonable input, get reasonable output

• System security: system properties preserved in face of attack
– For unreasonable input, output not completely disastrous

• Main difference: intelligent adversary trying to subvert system
and to evade defensive techniques

26

Have You Ever Given/Received Security Advice?

27

Did it improve security?

8/27/19

11

To Patch Or Not To Patch?

28

E. Redmiles, Z. Zhu, D. Kuchhal, T. Dumitraș, and M. Mazurek, ‘Asking for a Friend:
Evaluating Response Biases in Security User Studies.’ CCS 2018

0% 25% 50% 75% 100%

As Soon as Seen Within a Week Within a Month Within a Few Months

• Common advice:
– Educate users about the importance of

patching software vulnerabilities

To Patch Or Not To Patch?

29

E. Redmiles, Z. Zhu, D. Kuchhal, T. Dumitraș, and M. Mazurek, ‘Asking for a Friend:
Evaluating Response Biases in Security User Studies.’ CCS 2018

0% 25% 50% 75% 100%

As Soon as Seen Within a Week Within a Month Within a Few Months

Friend

Self

• Common advice:
– Educate users about the importance of

patching software vulnerabilities

Security Advice: Perceived effectiveness != Actual effectiveness

8/27/19

12

30

ENEE 657 Logistics

ENEE 657 In A Nutshell

• Course objectives
– Gain thorough grounding in computer security

• Understand attacks and defenses
• Learn to reason about their effectiveness in the real world

– Prepare you to collaborate with security researchers
• Think critically about recent advances in security
• Learn how to discuss security topics intelligently

• What ENEE 657 is not
– A course on cryptography

– A course on theoretical security

31

8/27/19

13

ENEE 657 Course Content
• Topics

– Fundamental security principles
• Vulnerability exploits and defenses against exploitation
• Privilege separation
• Confinement

– Security measurements (on global scale)
• Why it’s (still) hard to detect malware
• How cryptography fails in practice

– Making security predictions (with machine learning)
• Vulnerability exploitation
• Data breaches

– Security of machine learning
• Evasion attacks
• Poisoning attacks

• This is a systems-oriented course
– Semester-long project: substantial programming component
– Project goal: depth and quality adequate for publication in a workshop at USENIX Security

32

This is a Graduate Course

• Learning the material in this course requires participation
– This is not a sit-back-and-listen kind of course

– Understanding the assigned readings is required for understanding the topics

– In-class discussions are part of your grade

• You are responsible for holding up your end of the educational
bargain
– I expect you to attend classes and to complete reading assignments

– I expect you to try things out for yourself

– I expect you to know how to find research literature on security topics
• The required readings provide starting points

– I expect you to manage your time
• In general there will be assignments due before each lecture

33

8/27/19

14

Homeworks

• Goal: refresh background material
– Buffer overflow

– Data analytics

• First homework
– Will introduce the material on Wednesday

– Homework will be due on September 6th

34

Reading Assignments
• Readings: 1-2 papers before each lecture

– Not light reading – some papers require several readings to understand
– Check course web page (still in flux) for next readings and links to papers

• Paper critiques: post a critique of each paper on Piazza
– Provide feedback on at least 2 critiques from other students, to start the debate
– More on this later

• In-class paper discussions: debate contributions and weaknesses
– Structured discussion, inspired by competitive debating
– Open discussion with whole class afterward
– More on this later

• Discussion summaries: scribe posts summary to Piazza
– More on this later 35

8/27/19

15

Course Projects

• Pilot project: two-week individual projects
– Goal is to create a proof of concept

– Propose projects by September 9th

– Submit report by September 23rd

– Peer reviews: provide feedback (on Piazza) for at least 2 project reports from
other students

• Group project: ten-week group project
– Deeper investigation of promising approaches

– Submit written report and present findings during last week of class
• 2 checkpoints along the way (schedule on the course web page)

– Form teams and propose projects by September 30th

36

Pre-Requisite Knowledge

• Good programming skills

• Ability to come up to speed on advanced security topics
– Basic knowledge of security (CMSC 414, ENEE 457 or equivalent) is a plus

• The first module (‘Fundamental principles’) will provide some basic background
– The assigned readings provide the content of interest

• Ability to come up to speed on data analytics
– Several readings will provide good examples of measurement studies

• Understand these techniques and apply them in your projects!

37

8/27/19

16

Policies

• “Showing up is 80% of life” – Woody Allen
– You can get an “A” with a few missed assignments, but reserve these for

emergencies (conference trips, waking up sick, etc.)

– Notify the instructor if you need to miss a class, and submit your
assignment on time

• UMD’s Code of Academic Integrity applies, modified as follows:
– Complete your critiques entirely on your own. After you hand in your

critiques, you are welcome (and encouraged) to discuss them with others
– Discuss the problems and concepts involved in the project and

homeworks, but produce your own implementations
• Group projects are the result of team work
• You can post code snippets on Piazza (e.g. to ask a question), but don’t post the

whole program listing

• See class web site for the official version 38

Grading Criteria

• Components of the grade
– 5% Background homework

– 25% Written paper critiques

– 30% Participation (in-class discussion, contributions to topic summaries)

– 40% Projects
– 10% Potential bonus points

• Expectations
– You must do all the required readings

– You can explain the contributions and weaknesses of the papers you read
– You produce a working implementation for your project, and you must

understand how the implementation works

39

8/27/19

17

Review of Lecture

• What did we learn?
– Determining whether we can trust software is a tricky business

– Methods and motivations of attackers

– Perceived security != Objective security
• “If you cannot measure it, you cannot improve it” – Lord Thompson

• I want to emphasize
– This is systems course, not a not a pen-and-paper course

– You will be expected to build a real, working, system

• What’s next?
– Reading assignment: Saltzer and Schroeder (see http://ter.ps/enee657)

– Memory corruption and vulnerability exploits
40

http://ter.ps/enee657

