

About Your Instructor

Tudor Dumitraș

Office: IRB 5228 Email: tdumitra@umiacs.umd.edu Course Website: <u>http://ter.ps/enee657</u>

5

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

<section-header><section-header><section-header><section-header><section-header><section-header><text><text>

Range of Adversary Capabilities

• Attack targets: clients, servers, networks, applications, users

• Example attack methods:

- End-hosts (or devices): install malware
- LAN: read, replay, insert, delete, block messages
- Internet: send spam, conduct distributed denial of service attacks
- Applications: exploit vulnerabilities
- Data: steal/corrupt secret data, plant invalid data
- Users: conduct social engineering attacks

Aside: Is Hardware Secure?

- Malicious device firmware
 - Some HW functionality is actually implemented in SW
 - Do you trust device firmware to come from legitimate vendor?
 - Is firmware free of vulnerabilities?

Malicious hardware

- HW is as complex as SW and is designed using SW tools
- Do you know where each HW component comes from?
- Can you authenticate your HW?
- Could the CAD tools have introduced a backdoor (HW trojan)?

16

Cybercrime in the Real World

- Botnets
 - Worker bots running in the background on millions of compromised hosts
 - Bot master sending instructions to worker bots via command & control nodes
 - Possible instructions: propagate, send spam, conduct DDoS, mine Bitcoin
- Pay-per-Install (PPI)
 - "Affiliate" programs rewarding miscreants for installing malware on end-hosts
 - Useful for bootstrapping botnets, sending spam, staging denial of service attacks, performing click fraud, hosting scam websites
- Distributed Denial of Service (DDoS)
 - Instruct a botnet to direct a large amount of traffic to the target
 - Leverage protocols that can **amplify traffic** (e.g. NTP, DNS)

Desirable Security Properties

- Authenticity
- Confidentiality
- Integrity
- Availability
- Accountability and non-repudiation
- Access control
- Privacy

••••

ENEE 657 Logistics

ENEE 657 In A Nutshell

• Course objectives

- Gain thorough grounding in computer security
 - Understand attacks and defenses
 - Learn to reason about their effectiveness in the real world
- Prepare you to collaborate with security researchers
 - Think critically about recent advances in security
 - Learn how to discuss security topics intelligently
- What ENEE 657 is not
 - A course on cryptography
 - A course on theoretical security

ENEE 657 Course Content

- Topics
 - Fundamental security principles
 - Vulnerability exploits and defenses against exploitation
 - Privilege separation
 - Confinement
 - Security measurements (on global scale)
 - Why it's (still) hard to detect malware
 - How cryptography fails in practice
 - Making security predictions (with machine learning)
 - Vulnerability exploitation
 - Data breaches
 - Security of machine learning
 - Evasion attacks
 - Poisoning attacks
- This is a systems-oriented course
 - Semester-long project: substantial programming component
 - Project goal: depth and quality adequate for publication in a workshop at USENIX Security

34

35

Homeworks

- Goal: refresh background material
 - Buffer overflow
 - Data analytics
- First homework
 - Will introduce the material on Wednesday
 - Homework will be due on September 6th

Reading Assignments

- <u>Readings</u>: 1-2 papers before each lecture
 - Not light reading some papers require several readings to understand
 - Check course web page (still in flux) for next readings and links to papers
- Paper critiques: post a critique of each paper on Piazza
 - Provide feedback on at least 2 critiques from other students, to start the debate
 - More on this later
- In-class paper discussions: debate contributions and weaknesses
 - Structured discussion, inspired by competitive debating
 - Open discussion with whole class afterward
 - More on this later
- Discussion summaries: scribe posts summary to Piazza
 - More on this later

Course Projects

- Pilot project: two-week individual projects
 - Goal is to create a proof of concept
 - Propose projects by September 9th
 - Submit report by September 23rd
 - Peer reviews: provide feedback (on Piazza) for at least 2 project reports from other students
- Group project: ten-week group project
 - Deeper investigation of promising approaches
 - Submit written report and present findings during last week of class
 - 2 checkpoints along the way (schedule on the course web page)
 - Form teams and propose projects by September 30th

Pre-Requisite Knowledge

- Good programming skills
- Ability to come up to speed on advanced security topics
 - Basic knowledge of security (CMSC 414, ENEE 457 or equivalent) is a plus
 - The first module ('Fundamental principles') will provide some basic background
 - The assigned readings provide the content of interest
- Ability to come up to speed on data analytics
 - Several readings will provide good examples of measurement studies
 - Understand these techniques and apply them in your projects!

37

• See class web site for the official version

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Review of Lecture

- What did we learn?
 - Determining whether we can trust software is a tricky business
 - Methods and motivations of attackers
 - Perceived security != Objective security
 - "If you cannot measure it, you cannot improve it" Lord Thompson
- I want to emphasize
 - This is systems course, not a not a pen-and-paper course
 - You will be expected to build a real, working, system

• What's next?

- Reading assignment: Saltzer and Schroeder (see http://ter.ps/enee657)
- Memory corruption and vulnerability exploits