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Computer Security

Prof. Tudor Dumitraș
Associate Professor, ECE
University of Maryland, College Park

ENEE 657
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What are the odds 
that you will get hacked 

tomorrow?
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How Vulnerable Are You To Malware?
• We systematically measured amount of malware on 

4 million hosts in 44 countries
[The Global Cyber-Vulnerability Report, Springer, 2015]

• Top 5: 
– South Korea, India, Saudi Arabia, China, Malaysia, Russia

• United States: 10th safest 

Range of adversary capabilities Perceived vs. objective security
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Understanding Computer Security

Machine
Learning

Security
Measurements

Inference and 
Prediction
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(Adversarial)



8/27/19

3

About Your Instructor

Tudor Dumitraș
Office: IRB 5228
Email: tdumitra@umiacs.umd.edu
Course Website: http://ter.ps/enee657
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My Story
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• 2000s: Carnegie Mellon University
– Ph.D. in distributed systems

• 2010: Symantec Research Labs

• Since 2013: UMD
– Maryland Cybersecurity 

Center (MC2)

http://ter.ps/enee657
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ENEE 657 in a Nutshell

• ENEE 657 is a graduate-level security course
– Learn by reading, explaining and doing

– Project oriented: develop to a degree that would merit publication in one 
of the workshops associated with the USENIX Security Symposium 2020

• Aims to prepare you for research in security
– Not a tutorial or comprehensive course on these topics

– Instead, exploring a range of topics to illustrate some of the current 
research challenges

– Targeted at students who want to conduct research in the area or who 
are more generally interested in security as it applies to their fields
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Who Can You Trust?

Workstation

O/S

Application NFS Server

O/S

Server
Network
channel

RequestI wonder 
what Tudor’s 

SSN is …

Keyboard/display
channel

• Where is the request “from”?
– The user?  The workstation?  The application? The network channel? 

All of the above?

– Which of these actors do you trust? 8
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Ken Thompson

ACM Turing Award, 1983
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“Reflections on Trusting Trust”

• What software can we trust?

• Example: any operating system includes a program 
checking whether users are allowed to log in
– "login" or "su" in Unix
– Is the login binary from Windows/Mac OS/Ubuntu/etc. trustworthy?
– Does it send your password to someone?
– Does it have backdoor for a “special” remote user?

• Can't trust the binary, so check source code or write your own, 
recompile

• Does this solve problem?
10
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“Reflections on Trusting Trust” – cont’d 

• Who wrote the compiler?

• Compiler looks for source code that looks like the login 
process, inserts backdoor into it

• Ok, inspect the source code of the compiler…  Looks good?  
Recompile the compiler!

• Does this solve the problem?

11

“Reflections on Trusting Trust” – cont’d 

• The UNIX login program is compiled by a C compiler
– The C compiler was also compiled by an (older) C compiler

• Aside: how does the compiler handle special characters? 
…
c = next( ); 
if(c != '\\') 

return(c); 
c = next( ); 
if(c == '\\') 

return('\\'); 
if(c== 'n') 

return('\n'); 
if(c == 'v') 

return(11); 
…

…
c = next( ); 
if(c != '\\') 

return(c); 
c = next( ); 
if(c == '\\') 

return('\\'); 
if(c== 'n') 

return('\n'); 
if(c == 'v') 

return('\v'); 
…When adding a new special character to the 

C language, must specify the character code

In future versions of 
the compiler: use 
the special character

12
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“Reflections on Trusting Trust” – cont’d 

• The compiler is written in C …
compiler(S) {

if (match(S, "login-pattern")) {

compile (login-backdoor)

return
}

if (match(S, "compiler-pattern")) {

compile (compiler-backdoor)
return

}

.... /* compile as usual */

}

In future versions of 
the compiler: the 
backdoor no longer 
appears in the source 
code
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“The moral is obvious. You can't trust code that 
you did not totally create yourself. (Especially 

code from companies that employ people like me.)”

“Reflections on Trusting Trust” – cont’d

14
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Range of Adversary Capabilities

• Attack targets: clients, servers, networks, applications, users

• Example attack methods:
– End-hosts (or devices): install malware

– LAN: read, replay, insert, delete, block messages

– Internet: send spam, conduct distributed denial of service attacks
– Applications: exploit vulnerabilities

– Data: steal/corrupt secret data, plant invalid data

– Users: conduct social engineering attacks
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Aside: Is Hardware Secure? 

• Malicious device firmware
– Some HW functionality is actually implemented in SW

– Do you trust device firmware to come from legitimate vendor?

– Is firmware free of vulnerabilities? 

• Malicious hardware
– HW is as complex as SW and is designed using SW tools

– Do you know where each HW component comes from?

– Can you authenticate your HW?

– Could the CAD tools have introduced a backdoor (HW trojan)?

16
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Cybercrime in the Real World

• Botnets 
– Worker bots running in the background on millions of compromised hosts

– Bot master sending instructions to worker bots via command & control nodes 

– Possible instructions: propagate, send spam, conduct DDoS, mine Bitcoin

• Pay-per-Install (PPI)
– “Affiliate” programs rewarding miscreants for installing malware on end-hosts

– Useful for bootstrapping botnets, sending spam, staging denial of service 
attacks, performing click fraud, hosting scam websites

• Distributed Denial of Service (DDoS)
– Instruct a botnet to direct a large amount of traffic to the target

– Leverage protocols that can amplify traffic (e.g. NTP, DNS)
21

Desirable Security Properties

• Authenticity
• Confidentiality

• Integrity

• Availability
• Accountability and non-repudiation

• Access control

• Privacy

…

25
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Correctness versus Security

• System correctness: system satisfies specification
– For reasonable input, get reasonable output

• System security: system properties preserved in face of attack
– For unreasonable input, output not completely disastrous

• Main difference: intelligent adversary trying to subvert system 
and to evade defensive techniques 

26

Have You Ever Given/Received Security Advice?

27

Did it improve security?
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To Patch Or Not To Patch?

28

E. Redmiles, Z. Zhu, D. Kuchhal, T. Dumitraș, and M. Mazurek, ‘Asking for a Friend: 
Evaluating Response Biases in Security User Studies.’ CCS 2018 

0% 25% 50% 75% 100%

As Soon as Seen Within a Week Within a Month Within a Few Months

• Common advice: 
– Educate users about the importance of 

patching software vulnerabilities

To Patch Or Not To Patch?

29

E. Redmiles, Z. Zhu, D. Kuchhal, T. Dumitraș, and M. Mazurek, ‘Asking for a Friend: 
Evaluating Response Biases in Security User Studies.’ CCS 2018 

0% 25% 50% 75% 100%

As Soon as Seen Within a Week Within a Month Within a Few Months

Friend

Self

• Common advice: 
– Educate users about the importance of 

patching software vulnerabilities

Security Advice:     Perceived effectiveness != Actual effectiveness
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ENEE 657 Logistics 

ENEE 657 In A Nutshell

• Course objectives
– Gain thorough grounding in computer security

• Understand attacks and defenses
• Learn to reason about their effectiveness in the real world

– Prepare you to collaborate with security researchers
• Think critically about recent advances in security
• Learn how to discuss security topics intelligently

• What ENEE 657 is not
– A course on cryptography

– A course on theoretical security

31
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ENEE 657 Course Content
• Topics

– Fundamental security principles
• Vulnerability exploits and defenses against exploitation
• Privilege separation
• Confinement

– Security measurements (on global scale)
• Why it’s (still) hard to detect malware
• How cryptography fails in practice

– Making security predictions (with machine learning)
• Vulnerability exploitation
• Data breaches 

– Security of machine learning
• Evasion attacks
• Poisoning attacks 

• This is a systems-oriented course
– Semester-long project: substantial programming component
– Project goal: depth and quality adequate for publication in a workshop at USENIX Security

32

This is a Graduate Course

• Learning the material in this course requires participation 
– This is not a sit-back-and-listen kind of course

– Understanding the assigned readings is required for understanding the topics

– In-class discussions are part of your grade

• You are responsible for holding up your end of the educational 
bargain
– I expect you to attend classes and to complete reading assignments

– I expect you to try things out for yourself

– I expect you to know how to find research literature on security topics
• The required readings provide starting points

– I expect you to manage your time
• In general there will be assignments due before each lecture

33
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Homeworks

• Goal: refresh background material
– Buffer overflow

– Data analytics

• First homework 
– Will introduce the material on Wednesday

– Homework will be due on September 6th

34

Reading Assignments
• Readings: 1-2 papers before each lecture

– Not light reading – some papers require several readings to understand
– Check course web page (still in flux) for next readings and links to papers

• Paper critiques: post a critique of each paper on Piazza
– Provide feedback on at least 2 critiques from other students, to start the debate
– More on this later

• In-class paper discussions: debate contributions and weaknesses
– Structured discussion, inspired by competitive debating
– Open discussion with whole class afterward
– More on this later

• Discussion summaries: scribe posts summary to Piazza
– More on this later 35
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Course Projects

• Pilot project: two-week individual projects
– Goal is to create a proof of concept

– Propose projects by September 9th

– Submit report by September 23rd

– Peer reviews: provide feedback (on Piazza) for at least 2 project reports from 
other students 

• Group project: ten-week group project
– Deeper investigation of promising approaches

– Submit written report and present findings during last week of class
• 2 checkpoints along the way (schedule on the course web page)

– Form teams and propose projects by September 30th

36

Pre-Requisite Knowledge

• Good programming skills 

• Ability to come up to speed on advanced security topics
– Basic knowledge of security (CMSC 414, ENEE 457 or equivalent) is a plus

• The first module (‘Fundamental principles’) will provide some basic background
– The assigned readings provide the content of interest

• Ability to come up to speed on data analytics
– Several readings will provide good examples of measurement studies

• Understand these techniques and apply them in your projects!

37
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Policies

• “Showing up is 80% of life” – Woody Allen
– You can get an “A” with a few missed assignments, but reserve these for 

emergencies (conference trips, waking up sick, etc.)

– Notify the instructor if you need to miss a class, and submit your 
assignment on time

• UMD’s Code of Academic Integrity applies, modified as follows:
– Complete your critiques entirely on your own. After you hand in your 

critiques, you are welcome (and encouraged) to discuss them with others
– Discuss the problems and concepts involved in the project and 

homeworks, but produce your own implementations
• Group projects are the result of team work
• You can post code snippets on Piazza (e.g. to ask a question), but don’t post the 

whole program listing

• See class web site for the official version 38

Grading Criteria

• Components of the grade
– 5% Background homework

– 25% Written paper critiques 

– 30% Participation (in-class discussion, contributions to topic summaries)

– 40% Projects
– 10% Potential bonus points

• Expectations
– You must do all the required readings

– You can explain the contributions and weaknesses of the papers you read 
– You produce a working implementation for your project, and you must 

understand how the implementation works

39
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Review of Lecture

• What did we learn?
– Determining whether we can trust software is a tricky business

– Methods and motivations of attackers

– Perceived security != Objective security
• “If you cannot measure it, you cannot improve it” – Lord Thompson

• I want to emphasize
– This is systems course, not a not a pen-and-paper course 

– You will be expected to build a real, working, system

• What’s next?
– Reading assignment: Saltzer and Schroeder (see http://ter.ps/enee657)

– Memory corruption and vulnerability exploits
40

http://ter.ps/enee657

