
9/14/17	

1	

Hands-on	lab:	Security	analy4cs	

Octavian	Suciu	
osuciu@umiacs.umd.edu	
University	of	Maryland,	College	Park	

ENEE	657	

http://ter.ps/enee657	
1	

Today’s	Lecture	
• Where	we’ve	been	

–  OS	protecIon	mechanisms	

• Where	we’re	going	today	
–  Intro	to	supervised	learning	
–  Intro	to	Apache	Spark	
–  Document	Similarity	
–  Hands-on:	Spark	

• Where	we’re	going	next	
–  Homework	2	out	today,	due	next	Wednesday!	
–  First	paper	cri4ques	due	next	Monday!	
–  Network	security	fundamentals	

2	

9/14/17	

2	

Homework	&	Paper	Cri4que	Submissions	
•  Use	the	submit	command	on	GRACE	

–  SSH	into	grace.umd.edu	
submit	<year>	<semester>	<college>	<course>	<section>	<assignment>	<filename>	

•  Example:	submit	2017	fall	enee	657	0101	1	exploit_1.c	
–  Wrapper	that	performs	some	checks	on	the	submission	

/afs/glue.umd.edu/class/fall2017/enee/657/0101/bin/submit	
–  For	more	informaIon	on	GRACE:	hZp://www.grace.umd.edu/		

•  For	criIques,	submit	BibTeX	files	in	plain	text	
–  No	Word	DOC,	no	RTF,	no	HTML!	
–  Do	not	remove	BibTeX	syntax	(e.g.	the	@	sign	before	entries)	

•  This	confuses	my	parser	and	I	may	think	that	you	did	not	submit	the	homework	if	I	don’t	
catch	the	error!	

–  Submission	deadline:	at	noon	one	week	before	class	
•  Example:	criIques	for	Mon 09/25	papers	due	Mon 09/18	

3	

PredicIng	which	papayas	are	tasty	

• You	arrive	in	a	small	Pacific	island.	Papayas	are	an	important	
ingredient	here.	

• You	don’t	know	how	papayas	taste	like,	but	you	want	to	be	able	
to	pick	tasty	papayas	from	the	market.	

• You	taste	a	lot	of	papayas	and	record	a	part	of	their	features:	
soeness	and	color.	

• Based	on	these	features,	you	want	to	predict	which	(new)	
papayas	from	the	market	are	tasty.	

• Supervised	learning	aims	to	solve	this!	
	

4	

9/14/17	

3	

Introduc4on	to	Supervised	Learning	
•  Components	of	a	classificaIon	system:		

– Training	set	(X,	y)	
– PredicIon:	y’	=	f(X;w)	
– Cost	funcIon:	c(y’,	y)	
– Goal:	find	w	that	minimizes	c	w.r.t.	to	(X,y)	on	f	

f(X;w)	X y’

5	

Supervised	Learning	in	Context	
•  Training	set	(X,	y)	

–  If	y	is	unknown	à	unsupervised	learning	
–  If	y	is	categorical	à	classificaIon	
•  If	y	is	binary	à	detecIon	

–  If	y	is	conInuous	à	regression	

6	

9/14/17	

4	

•  Training:	a	learning	algorithm	reads	in	training	data	and	computes	f	

•  TesIng:	f	can	then	automaIcally	label	future	text	examples.	

Supervised	Learning	

7	

Example	of	Available	Tools	
•  Libraries	

–  Scikit-learn	
–  Spark	MLlib	
– R	
– Weka	

•  Specific	
– OpenCV	
–  LibSVM	
– TensorFlow,	Theano,	Keras,	…	

8	

9/14/17	

5	

Popular	Classifica4on	Techniques	
•  LogisIc	regression		
•  Naïve	Bayes	
•  SVM	

•  Decision	trees	

9	

SVM	

• Support	Vector	Machine	
•  IntuiIon	

–  Training	instances	
• Points	in	feature	space	

–  Classifier	
• Hyperplane	that	maximizes	separaIon	

10	

9/14/17	

6	

Ar4ficial	Example	

• Two	groups	(randomly	generated)	
–  X1	
• y=0:	N(0,	0.5)	
• y=1:	N(1,	0.5)	

–  X2	
• U(0,	1)		

11	

Ar4ficial	Example	(2)	

• SeparaIon	hyperplane:	
–  Ideal:		
• X1	=	0.5		

–  EsImated:	
• Slope	=	10	

• Finding	the	ideal		
classifier	is	hard!	

12	

9/14/17	

7	

Implementa4on	

• Steps	
1.  Extract	features	

2.  Select	model	and	classifier	

3.  Select	features	
4.  Train	the	model	

5.  Evaluate	the	performance	
6.  Test	on	unlabeled	examples	

13	

• DetecIng	malicious	Android	apps	

Feature	Extrac4on	

14	

9/14/17	

8	

Model	Selec4on	

• Finng	a	2D	set	of	points	
–  Linear	hypothesis	
–  Higher	order	polynomial	

	

15	

Classifier	Selec4on	

• SVM	

• Naïve	Bayes	

• Decision	Tree	

16	

9/14/17	

9	

Feature	Selec4on	

• Remove	features	with	low	variance	

• hZp://scikit-learn.org/stable/modules/
feature_selecIon.html	

17	

Performance	Evalua4on		

• Popular	metrics	
–  Precision	TP/(TP+FP)	
• FracIon	of	detected	samples	that	are	malicious	

–  Recall	(True	posiIve	rate)	TP/(TP+FN)	
• FracIon	of	malicious	samples	that	are	detected	

–  False	posiIve	rate	FP/(FP+TN)	

TRUE	(Truth)	 FALSE	(Truth)	

TRUE	(Detector)	 True	PosiIve	(TP)	 False	PosiIve	(FP)	

FALSE	(Detector)	 False	NegaIve	(FN)	 True	NegaIve	(TN)	

18	

9/14/17	

10	

Performance	Evalua4on	(2)	

• K-fold	Cross	validaIon	
–  ParIIon	data	randomly	to	k	subsamples	

–  Training	data:	k-1	subsamples	

–  TesIng	data:	1	subsample	

19	

Performance	Evalua4on	(3)	

20	

9/14/17	

11	

• Framework	for	processing	large	volumes	of	data	
• Based	on	the	Map/Reduce	paradigm	
• Architecture	based	on	Driver	&	Workers	

๏ Driver	sends	computaIon	to	the	workers	

๏ Workers	compute	&	report	to	the	Driver	for	synchronizaIon	

• PrimiIve:	Resilient	Distributed	Datasets	-	RDDs	
• All	workers	execute	the	same	task	

Apache	Spark		

21	

• Driver spawns & assigns tasks to workers

Driver Worker

Worker

Worker

Spark architecture	

22	

9/14/17	

12	

• Distributed	array,	evenly	split	across	workers	
• Enable	operaIon	pipelining	&	fault	tolerance	

Worker

Worker

Worker

[a, b, c]

[a]

[b]

[c]

RDDs	

23	

• Immutable	values	cached	by	all	workers	

Worker

Worker

Worker

X

X

X

X

Broadcast	Variables	

24	

9/14/17	

13	

Opera4ons	on	RDDs	

25	

• Each	element	of	the	RDD	is	transformed	using	f()	

Worker 2

Worker 1

Worker 3

Worker 2

Worker 1

Worker 3

[f(a)]

[f(b)]

[f(c)]

[a]

[b]

[c]

Example	Opera4on:	Map()	

26	

9/14/17	

14	

• Merges	elements	using	a	commutaIve	&	associaIve	
funcIon	f()		

Worker 2

Worker 1

Worker 3

Worker 2

Worker 3

[f(a,b)]

[f(c)]

[a]

[b]

[c] Master

f(f(a,b),c)

Example	Opera4on:	Reduce()	

27	

• Retains elements matching a condition

Worker 2

Worker 1

Worker 3

Worker 2

Worker 1

Worker 3

[a]

[]

[c]

[a]

[b]

[c]

Example	Opera4on:	Filter()	

28	

9/14/17	

15	

• Textual	similarity	between	millions	of	documents	
• All-pairs	similarity	is	not	feasible		
• Example	applicaIons:	

๏ Plagiarism	detecIon	

๏ Exploit	code	reuse	

Document	Similarity	

29	

Document	Similarity	Approach	

30	

9/14/17	

16	

• Popular metric where documents are represented as
sets

SIM(S,T) = 3/8

Jaccard	Similarity	

31	

Compu4ng	the	Jaccard	Similarity	Efficiently	

32	

9/14/17	

17	

Compu4ng	the	Jaccard	Similarity	Efficiently	

33	

• Split	document	in	sequences	of	tokens	
• Tokens	are	words/characters	etc	
• Sequence	of	k	tokens	=	k-shingle	(k-gram)	
• Example:		

๏ D	=	abcab		

๏ k	=	2	chars	

๏ S(D)	=	{	ab,	bc,	ca}	

Document	Shingling	

34	

9/14/17	

18	

Compu4ng	the	Jaccard	Similarity	Efficiently	

35	

• Represent	large	sets	of	tokens	through	smaller	signatures	
• Preserves	the	original	Jaccard	similarity	when	compared	

Minhashing	

36	

9/14/17	

19	

• CharacterisIc	matrix:	

Compu4ng	the	minhash	(1)	

37	

• Random	permutaIon	of	rows		
• MinHash	=	first	row	in	which	a	document	has	‘1’	

h(S1)=a

Compu4ng	the	minhash	(2)	

38	

9/14/17	

20	

random permutations of
indices

similarity comparison

1 2 3 4 1 2 3 4

documents documents

MinHash

Minhash	Example	

39	

• Probability	that	h(D1)	=	h(D2)	~	SIM(D1,	D2)	

Minhash	Property	

40	

9/14/17	

21	

Compu4ng	the	Jaccard	Similarity	Efficiently	

41	

• Generate	small	list	of	candidate	pairs	from	collecIon	of	
signatures	

• Idea:	
๏ Hash	signatures	to	many	buckets	

๏ Elements	in	the	same	bucket	are	candidate	pairs	

• Documents	are	split	in	bands	(chunks)	then	hashed	
independently	

Locality	Sensi4ve	Hashing	(LSH)	

42	

9/14/17	

22	

LSH	Example	

43	

• Probability	that	two	similar	signatures	will	agree	on	at	
least	one	of	the	bands	is	high		
๏ And	that	is	exactly	when	they	become	candidates!	

Property	of	LSH	

44	

9/14/17	

23	

 
Sources

• J. Leskovec, A. Rajaraman, J. Ullman: Mining of
Massive Datasets, http://www.mmds.org

• DataBricks: Spark Tutorial,
http://lintool.github.io/SparkTutorial/

• A Course in Machine Learning by Hal Daumé III,
http://ciml.info/

• Understanding Machine Learning: From Theory to
Algorithms:
http://www.cs.huji.ac.il/~shais/
UnderstandingMachineLearning/

• Ziyun Zhu
• Radu Marginean 45	

