

http://ter.ps/enee657

Today's Lecture

- Where we've been
 - OS protection mechanisms
- Where we're going today
 - Intro to supervised learning
 - Intro to Apache Spark
 - Document Similarity
 - Hands-on: Spark
- Where we're going next
 - Homework 2 out today, due next Wednesday!
 - First paper critiques due next Monday!
 - Network security fundamentals

2

Homework & Paper Critique Submissions

- Use the submit command on GRACE
 - SSH into grace.umd.edu submit <year> <semester> <college> <course> <section> <assignment> <filename>
 - Example: submit 2017 fall enee 657 0101 1 exploit_1.c
 - Wrapper that performs some checks on the submission /afs/glue.umd.edu/class/fall2017/enee/657/0101/bin/submit
 - For more information on GRACE: <u>http://www.grace.umd.edu/</u>
- For critiques, submit BibTeX files in plain text
 - No Word DOC, no RTF, no HTML!
 - Do not remove BibTeX syntax (e.g. the @ sign before entries)
 - This confuses my parser and I may think that you did not submit the homework if I don't catch the error!
 - Submission deadline: at noon one week before class
 - Example: critiques for Mon 09/25 papers due Mon 09/18

Predicting which papayas are tasty

- You arrive in a small Pacific island. Papayas are an important ingredient here.
- You don't know how papayas taste like, but you want to be able to pick tasty papayas from the market.
- You taste a lot of papayas and record a part of their features: <u>softness</u> and <u>color</u>.
- Based on these features, you want to predict which (new) papayas from the market are tasty.
- Supervised learning aims to solve this!

Supervised Learning in Context Training set (X, y) If y is unknown → unsupervised learning If y is categorical → classification If y is binary → detection If y is continuous → regression

6

Popular Classification Techniques

- Logistic regression
- Naïve Bayes
- <u>SVM</u>
- Decision trees

14

Implementation

- Steps
 - 1. Extract features
 - 2. Select model and classifier
 - 3. Select features
 - 4. Train the model
 - 5. Evaluate the performance
 - 6. Test on unlabeled examples

Feature ExtractionDetecting malicious Android apps

<?xml version="1.0" encoding="utf-8" ?> <manifest xmlns:android="http://schemas.android.com/apk/res/android" package="org.sergez.splayer" and roid: version Code="37" android:versionName="2.1"> <use-sdk android:min5dkVersion="8" android:target5dkVersion="19"/>
 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/> <application android:icon="@drawable/ic_launcher" android:label="@string/app_name" android:debuggable="false" > <activity android:name=".activity.SimplePlayerActivity" android:label="@string/app_name" android:theme="@style/Theme.Sherlock"> intent-filter> <action android:name="android.intent.action.MAIN"/> <category android:name="android.intent.category.LAUNCHER"/> </intent-filter> </activity> <service android:name=".service.SimplePlayerService" android:enabled="true"/> </application> </manifest>

• 3 1 1 1	<pre>>>> from sklearn import svm >>> X = [[0, 0], [1, 1]]</pre>
	>>> y = [0, 1]
	>>> clf.fit(X, y)
Naïve Ba	ayes
>>> 1 >>> (<pre>from sklearn.naive_bayes import GaussianNB clf = GaussianNB() clf.fit(X, Y)</pre>
Desision	T
Decision	1 Tree
>	<pre>>> from sklearn import tree >> X = [[0, 0], [1, 1]] >> Y = [0, 1]</pre>
>	<pre>>> clf = tree.DecisionTreeClassifier() >> clf = clf fit(X = X)</pre>
>	\rightarrow CLF = CLF.FLU(A, T)
>	\rightarrow cli = cli.it(λ , i)

orformanco E	valuation (2)				
eriormance E	valuation (3)				
> from sklearn i	mport metrics				
<pre>scores = cross_</pre>	validation.cross_val_score	clf, iris.data, iris.ta			
. cv=5, scori	ng='f1_weighted')				
A 1		•			
Scoring	Function	Comment			
Classification					
'accuracy'	metrics.accuracy_score				
'average_precision'	metrics.average_precision_score				
11'	metrics.fl_score	for binary targets			
'f1_micro'	metrics.f1_score	micro-averaged			
'f1_macro'	metrics.f1_score	macro-averaged			
'f1_weighted'	metrics.f1_score	weighted average			
'f1_samples'	metrics.f1_score	by multilabel sample			
'log_loss'	metrics.log_loss	requires predict_proba support			
'precision' etc.	metrics.precision_score	suffixes apply as with 'f1'			
'recall' etc.	metrics.recall_score	suffixes apply as with 'f1'			
'roc_auc'	metrics.roc_auc_score				
Clustering					
'adjusted_rand_score'	metrics.adjusted_rand_score				
Regression					
'mean absolute error'	metrics.mean absolute error				
'mean squared error'	metrics.mean squared error				
'median absolute error'	metrics.median absolute error				
4.01	and all an all answer				

Apache Spark

- Framework for processing large volumes of data
- Based on the Map/Reduce paradigm
- Architecture based on Driver & Workers
 - Oriver sends computation to the workers
 - Workers compute & report to the Driver for synchronization
- Primitive: Resilient Distributed Datasets RDDs
- All workers execute the same task

Computing the minhash (1)

• Characteristic matrix:

S_1	S_2	S_3	S_4
1	0	0	1
0	0	1	0
0	1	0	1
1	0	1	1
0	0	1	0
	S ₁ 1 0 1 0	$ \begin{array}{c ccc} S_1 & S_2 \\ \hline 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{array} $	$\begin{array}{c cccc} S_1 & S_2 & S_3 \\ \hline 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}$

Sources

- J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, <u>http://www.mmds.org</u>
- DataBricks: Spark Tutorial, <u>http://lintool.github.io/SparkTutorial/</u>
- A Course in Machine Learning by Hal Daumé III, <u>http://ciml.info/</u>
- Understanding Machine Learning: From Theory to Algorithms: <u>http://www.cs.huji.ac.il/~shais/</u>

UnderstandingMachineLearning/

- Ziyun Zhu
- Radu Marginean