
9/12/17	

1	

4.	OS	Protec,on	Mechanisms	

Prof.	Tudor	Dumitraș	
Assistant	Professor,	ECE	
University	of	Maryland,	College	Park	

ENEE	657	

http://ter.ps/enee657		

Today’s	Lecture	
• Where	we’ve	been	

– Memory	corrupGon	exploits	
–  Cryptography	

• Where	we’re	going	today	
–  SeparaGon	of	Privileges	
–  Confinement	
–  ImplementaGon	of	OS	protecGon	mechanisms	
–  Pilot	project	proposals	due	today!	

• Where	we’re	going	next	
–  Security	analyGcs	lab	
–  Next	week:	Network	security	basics	

2	

9/12/17	

2	

Pilot	Project	Proposals	

• Due	today	at	midnight	
–  Post	proposal	on	the	Piazza	discussion	board	
–  Some	ideas	available	on	the	class	Web	page	

• Proposal	should	be	concise	(2-3	paragraphs)	
–  Problem	statement	

–  Approach	considered	for	tackling	the	problem	
• Must	describe	concrete	tasks,	not	vague	direcGons	
• Must	demonstrate	that	you’ve	thought	about	the	first	steps,	and	you	are	not	
simply	paraphrasing	the	project	ideas	I	gave	you	

3	

Goals	of	Security	Mechanisms	
•  Eliminate	an	en,re	class	of	aSacks	

–  Example:	harvesGng	credit	card	numbers	by	sniffing	network	packets	used	to	
be	common	in	the	’90s.	HTTPS	stopped	that.	

–  Challenges:	
• Arms	race:	adversaries	find	new	aSacks		
(e.g.,	harvesGng	credit	card	numbers	by	hacking	point-of-sale	systems)	

• Mechanism	may	not	address	the	capabili,es	of	real-world	adversaries	
(we’ve	seen:	aSacking	crypto	without	breaking	the	math)	

• Make	it	less	likely	for	an	aSack	to	succeed		
–  Increases	the	aSacker’s	work	factor	
–  Requires	understanding	aSack	techniques	

•  Dis,nguish	between	benign	and	malicious	behavior	
–  Increasingly	using	sta,s,cal	techniques	

4	

9/12/17	

3	

Sta,s,cal	Inference	

• You	must	understand	how	to	interpret	data	correctly	

• StaGsGcal	inference:	Methods	for	drawing	conclusions	about	a	
populaGon	from	sample	data		

• Two	key	methods	
–  Confidence	intervals		
–  Hypothesis	tests	(significance	tests)		

5	

Confidence	Intervals	

• 95%	confidence	interval	for	the	sample	mean	
–  If	we	repeated	the	experiment	100	Gmes,	we	expect	that	this	interval	
would	include	the	mean	95/100	Gmes		

–  		

• Why	95%?	
–  No	good	reason,	but	widely	used	

• You	can	compute	confidence	intervals	for	many	staGsGcal	
measures	
–  Variance,	slope	of	regression	line,	effect	size,	etc.	

6	

What	is	the	range	of	likely	values?	

CI = µ ±1.96 σ
n

μ:	mean	
σ:	standard	deviaGon	
n:	number	of	elements	

9/12/17	

4	

Hypothesis	Tests	

• Compare	an	experimental	group	and	a	control	group		
–  H0:	Null	Hypothesis	=	No	difference	between	the	groups		

–  H1:	AlternaGve	Hypothesis	=	Significant	difference	between	the	groups		

• Hypothesis	tests	
–  t-test:	are	the	means	significantly	different?	One-tailed	(μ1>μ2),	two-tailed	
(μ1≠μ2)	
• Paired	(difference	between	pairs	of	measurements)	

–  χ2	goodness-of-fit	test:	does	the	empirical	data	match	a	probability	
distribuGon	(or	some	other	hypothesis	about	the	data)?		

–  Analysis	of	Variance	(ANOVA):	is	there	a	difference	among	a	number	of	
treatments?	Which	factors	contribute	most	to	the	observed	variability?		

7	

Is	a	result	sta,s,cally	significant?	

Hypothesis	Tests	–	How	Different	is	Different?	

• How	do	we	know	the	difference	in	two	treatments	is	not	just	
due	to	chance?		
– We	don’t.	But	we	can	calculate	the	odds	that	it	is.		

• The	p-value	=	likelihood	that	H0	is	true	
–  In	repeated	experiments	at	this	sample	size,	how	oken	would	you	see	a	
result	at	least	this	extreme	assuming	the	null	hypothesis?		

–  p	<	0.05:	the	difference	observed	is	sta,s,cally	significant	
–  p	>	0.05:	the	result	is	inconclusive	
– Why	5%?	Again,	no	good	reason	but	widely	used.	

!  A	non-significant	difference	is	not	the	same	as	no	difference	
!  A	significant	difference	is	not	always	an	interes,ng	difference	

8	

Is	a	result	sta,s,cally	significant?	
	

9/12/17	

5	

Confusion	Matrix	

True	-	 True	+	

Predicted	-	
True	NegaGve	(TN)	
Correct	decision	

False	Nega,ve	(FN)	
Type	2	error	

Predicted	+	
False	Posi,ve	(FP)	

Type	1	error	
True	PosiGve	(TP)	
Correct	decision	

9	

How	to	determine	if	your	aeack	detector	does	a	good	job?	

• You	need	a	training	set	(ground	truth)	and	a	tesGng	set	
–  Or	you	can	split	your	ground	truth	into	two	data	sets	
–  Even	beSer:	K-fold	cross-validaGon	
• Select	K	samples	without	replacement	and	train	classifier	mulGple	Gmes	

• You	can	make	a	mistake	in	two	different	ways	

Evalua,ng	Results	

• There	is	usually	a	trade-off	between	FPs	and	FNs	
–  Reducing	type	1	errors	causes	more	type	2	errors,	and	vice-versa	

• Sensi,vity	=	TP	/	(TP+FN)	
–  Ability	to	idenGfy	true	posiGves	
–  Also	called	true	posiGve	rate	

• Specificity	=	TN	/	(FP	+	TN)	
–  Ability	to	rule	out	true	negaGves		
–  Also	called	true	negaGve	rate	

10	

Is	it	beeer	to	have	low	FPs	or	low	FNs?	

EvaluaGng	keystroke	dynamics	
[Killourhy	&	Maxion,	DSN’09]	

	

5.14. k-means
This detector was described by Kang et al. [11]. It uses

the k-means clustering algorithm to identify clusters in the
training vectors, and then calculates whether the test vector
is close to any of the clusters. In the training phase, the
detector simply runs the k-means algorithm on the training
data (with k = 3). The algorithm produces three centroids
such that each training vector should be close to at least one
of the three centroids. In the test phase, the anomaly score is
calculated as the Euclidean distance between the test vector
and the nearest of these centroids.

6. Evaluation methodology
The final step was to evaluate each of the 14 detectors

using the password-timing data. Each detector was trained
and tested using the same procedure, and the anomaly
scores output by each detector were converted into standard
measures of error.

6.1. Training and testing the detectors
Consider a scenario in which a user’s long-time pass-

word has been compromised by an impostor. The user is
assumed to be practiced in typing their password, while the
impostor is unfamiliar with it (e.g., typing it for the first
time). We measure how well each of our detectors is able to
discriminate between the impostor’s typing and the genuine
user’s typing in this scenario.

We start by designating one of our 51 subjects as the gen-
uine user, and the rest as impostors. We train an anomaly
detector and test its ability to recognize the genuine user and
impostors as follows:
1. We run the training phase of the detector on the timing

vectors from the first 200 password repetitions typed by
the the genuine user. The detector builds a model of the
user’s typing behavior.

2. Then, we run the test phase of the detector on the timing
vectors from the remaining 200 repetitions typed by the
genuine user. We record the anomaly scores assigned to
each timing vector as user scores.

3. Finally, we run the test phase of the detector on the tim-
ing vectors from the first five repetitions typed by each
of the 50 impostors. We record the anomaly scores as-
signed to each timing vector as impostor scores.

This process is then repeated, designating each of the other
subjects as the genuine user in turn. After training and test-
ing each of the 14 detectors, we have a total of 741 sets of
user and impostor scores (51 subjects⇥ 14 detectors).

It may seem that 200 repetitions is an unrealistically
large amount of training data. We were concerned that
fewer passwords might unfairly cause one or more detec-
tors to under-perform (e.g., Table 1 shows detectors trained
with up to 325 passwords). Likewise, an unpracticed impos-
tor might seem unrealistic, since impostors might practice if

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Nearest Neighbor (Mahalanobis)
Subject 19

False Alarm Rate

H
it

R
at

e equal−error rate

zero−miss rate

Figure 1. An example ROC curve depicts the
performance of the Nearest Neighbor (Maha-
lanobis) detector with subject 19 as the gen-
uine user. The curve shows the trade-off be-
tween the hit rate and the false-alarm rate.
Proximity to the top-left corner of the graph
is a visual measure of performance.

they knew timing mattered. We believe that our choices are
fair for a first evaluation; experiments involving fewer train-
ing repetitions and more practiced impostors are planned.

6.2. Calculating detector performance
To measure detector performance, we used the scores

to generate a graphical summary of performance called an
ROC curve [20]. An example ROC curve is shown in Fig-
ure 1. The hit rate is the frequency with which impostors
are detected (i.e., 1 � miss rate), and the false-alarm rate
is the frequency with which genuine users are mistakenly
detected as impostors. Whether or not a password gener-
ates an alarm depends on how the threshold on the anomaly
scores is chosen. The choice of threshold establishes the
operating point of the detector on the ROC curve. Over the
continuum of possible thresholds, the ROC curve illustrates
the hit and false-alarm rates that would be attained at each
possible detector operating point.

The ROC curve is a common visualization of a detector’s
accuracy, and on the basis of the ROC curve, various mea-
sures of error can be derived. Table 1 lists several studies
that have chosen a threshold using detector-specific heuris-
tics. As the ROC curve shows, the nature of these heuristics
could have a major effect on the reported miss and false-
alarm rates. Further, if different heuristics are used for dif-
ferent detectors, comparing detector performance becomes
difficult.

Two measures are commonly used for determining a

978-1-4244-4421-2/09/$25.00 c�2009 IEEE 131

FP	rate	(1	–	Specificity)	

TP
	ra

te
	(S
en

siG
vi
ty
)	

9/12/17	

6	

Detec,ng	Aeacks	and	Intrusions	

• ObservaGon:	to	damage	host	system	(e.g.	persistent	changes)			
app	must	make	system	calls:	
–  To	delete/overwrite	files: 	unlink,	open,	write	

–  To	do	network	aSacks: 	socket,	bind,	connect,	send	

•  Idea:	monitor	all	system	calls	and	block	those	that	violate	
security	policy	
–  Language-level:	Java	runGme	environment	inspects	the	stack	of	the	
funcGon	aSempGng	to	access	a	sensiGve	resource	and	checks	whether	it	
is	permiSed	to	do	so	

–  OS-level:	system	call	wrapper	(more	on	this	in	a	bit)	

–  How	do	you	establish	the	security	policy?	

Example:	“Immunology”	Approach		
[Forrest	et	al.,	IEEE	S&P’96]	
• Normal	profile:	short	sequences	of	system	calls	

–  Use	strace	on	UNIX	
• Compute	staGsGcal	properGes	and	report	anomalies		

– More	on	this	later	

…	open,read,write,mmap,mmap,getrlimit,open,close	…	

open,read,write,mmap	
read,write,mmap,mmap	

			…	

write,mmap,mmap,getrlimit	
mmap,mmap,getrlimit,open	
…	

remember	last	K	events	

Compute	%	of	traces	that		
have	been	seen	before.	
Is	it	above	the	threshold?	

Y	

N	

normal	

abnormal	Raise	alarm	if	a	high	fracGon	of	
system	call	sequences	haven’t	

been	observed	before	

9/12/17	

7	

Goals	of	Security	Mechanisms	
•  Eliminate	an	en,re	class	of	aSacks	

–  Example:	harvesGng	credit	card	numbers	by	sniffing	network	packets	used	to	
be	common	in	the	’90s.	HTTPS	stopped	that.	

–  Challenges:	
• Arms	race:	adversaries	find	new	aSacks		
(e.g.,	harvesGng	credit	card	numbers	by	hacking	point-of-sale	systems)	

• Mechanism	may	not	address	the	capabili,es	of	real-world	adversaries	
(we’ve	seen:	aSacking	crypto	without	breaking	the	math)	

• Make	it	less	likely	for	an	aSack	to	succeed		
–  Increases	the	aSacker’s	work	factor	
–  Requires	understanding	aSack	techniques	

•  Dis,nguish	between	benign	and	malicious	behavior	
–  Increasingly	using	sta,s,cal	techniques	

13	

Principle	of	Least	Privilege	

• What’s	a	privilege?	
–  Ability	to	access	or	modify	a	resource	

• System	has	mulGple	users	
–  And	mulGple	components	(more	on	in	a	bit)	

• Principle	of	Least	Privilege	
–  A	user	should	only	have	the	minimal	privileges	needed	to	do	his/her	work	
–  Same	for	system	components	

9/12/17	

8	

OS	Security	Model	
•  IsolaGon	between	processes	

–  Each	process	has	a	user	(UID)	
• Two	processes	with	same	UID	have	same	permissions	

–  A	process	may	access	files,	network	sockets,	….	
• Permission	granted	according	to	UID	

• Access	control	matrix	[Lampson]	

File	1	 File	2	 File	3	 …	 File	n	

User	1	 read	 write	 -	 -	 read	

User	2	 write	 write	 write	 -	 -	

User	3	 -	 -	 -	 read	 read	

…	

User	m	 read	 write	 read	 write	 read	

Principals	

Resources	

Implementa,on	Requirements	
Key	component:				reference	monitor	
• Mediates	requests	from	applicaGons	

–  Implements	protecGon	policy	
–  Enforces	isolaGon	and	confinement	

• Must	always	be	invoked:	
–  Every	applicaGon	request	must	be	mediated	

•  Tamperproof:	
–  Reference	monitor	cannot	be	killed	
–  …	or	if	killed,	then	monitored	process	is	killed	too	

•  Small	enough	to	be	analyzed	and	validated	

16	

9/12/17	

9	

Implementa,on	Concept	#1:	Access	Control	Lists	

• Access	control	list	(ACL)	
–  Store	column	of	matrix	with	resource	

–  Relies	on	authenGcaGon:	need	to	know	user	
–  DelegaGon:	let	other	process	act	under	current	user	
• UNIX	su/sudo,	Windows	UAC	

17	

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

ACL:	store	in		
filesystem	metadata	

UNIX	Access	Control	Lists	

18	

UNIX	permissions:	
				rwx			rwx			rwx	
ownr	 grp	 othr	

• UNIX	permissions	are	designed	for	a	single	host	that	manages	a	
local	filesystem	
–  UIDs:	local	users	
–  Reference	monitor:	OS	kernel	

9/12/17	

10	

AFS	Access	Control	Lists	

19	

• The	Andrew	File	System	(AFS)	is	a	distributed	filesystem	
–  Precursor	to	cloud	storage	systems	

–  Users	divided	into	realms	(e.g.	UMD,	CMU)	

–  Reference	monitor:	file	server	

AFS	permissions	

Set-id	Bits	on	Executable	Unix	File	

• Three	set-id	bits	
–  Setuid	–	set	EUID	of	process	to	ID	of	file	owner	
–  Setgid	–	set	EGID	of	process	to	GID	of	file	
–  SGcky	
• Off:	if	user	has	write	permission	on	directory,	can	rename	or	remove	files,	even	
if	not	owner	

• On:	only	file	owner,	directory	owner,	and	root	can	rename	or	remove	file	in	the	
directory	

• Why	needed?	
grace1:~/enee757:	ls	-al	/usr/bin/passwd	
-rwsr-xr-x.	1	root	root	30768	Feb	17		2012	/usr/bin/passwd	
grace1:~/enee757:	ls	-al	/etc/passwd	
-r--r--r--	1	root	root	3521596	Sep		4	18:24	/etc/passwd	

9/12/17	

11	

The	Confused	Deputy	Problem		

• Say	I	want	to	write	a	script	for	students	to	submit	assignments	
–  submit	is	invoked	by	students,	compiles	and	runs	tests	on	the	assignment,	
and	places	the	results	in	a	folder	that	I	can	read	

• Say	I	also	want	the	script	to	maintain	a	log	file,	for	debugging	
–  submit	runs	with	the	student’s	access	control	permissions	

–  Different	students	cannot	access	each	others’	submissions	
–  I	want	to	keep	the	log	in	the	instructor/	folder	
–  How	can	submit	update	the	log	file?	

21	

grace1:~/enee757:	ls		
instructor/	
submit/student1	
submit/student2	
	

My	folder	(no	student	access)	
Students	can	write	

The	Confused	Deputy	Problem	–	cont’d	
[Hardy,	1988]	
•  I	could	make	submit	setuid-instructor	

–  At	runGme,	the	script	acquires	the	permissions	to	write	in	instructor/	
–  submit	can	update	the	logfile	

•  Students	are	sGll	unable	to	access	files	in	instructor/	directly		
–  Can	you	see	a	problem	with	this?	

• submit	compiles	and	executes	programs	that	students	wrote!	
–  A	student	may	submit	a	program	that	modifies	files	in	instructor/		
(say,	the	grade	records)	
• Or	exploit	a	vulnerability	in	my	submit	program	to	execute	code	

•  The	problem	is	that	setuid	grants	access	to	all	the	files	I	can	write	
(ambient	authority)	
–  I	only	wanted	to	grant	write	access	to	the	log	file	
–  But	this	cannot	be	expressed	in	the	ACL	model!	

22	

9/12/17	

12	

Implementa,on	Concept	#2:	Capabili,es	

• Capabili,es	
–  User	holds	a	,cket	for	each	resource	
–  Two	variaGons	
• Store	row	of	matrix	with	user,	under	OS	control	
• Unforgeable	Gcket	in	user	space	

–  Reference	monitor	checks	Gcket:	does	not	need	to	know	idenGfy	of	user/
process	

–  DelegaGon:	Process	can	pass	capability	at	run	Gme	

23	

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

Capability:	give	user		
unforgeable	Gcket	

Role-Based	Access	Control	

Users	 Roles	(also	known	as	Groups)	 Resources	

engineering	

markeGng	

human	res	

Server	1	

Server	3	

Server	2	

•  Role	examples:	Administrator,	PowerUser,	User,	Guest	
–  Assign	permissions	to	roles;	each	user	gets	permission	
–  Advantage:	users	change	more	frequently	than	roles	

9/12/17	

13	

The	Confinement	Principle	

• We’ve	talked	about	file	access	control		
– What	about	other	resources?	

• We	oken	need	to	run	buggy/unstrusted	code:	

–  programs	from	untrusted	Internet	sites:	

• apps,			extensions,			plug-ins,			codecs	for	media	player	

–  exposed	applicaGons:				pdf	viewers,		outlook	

–  legacy	daemons:			sendmail,		bind	

–  honeypots	

Goal:				if	applicaGon	“misbehaves”		⇒		kill	it	

Monolithic	Design	

System	

Network	

User	input	

File	system	

Network	

User	device	

File	system	

9/12/17	

14	

Monolithic	Design	

System	

Network	

User	input	

File	system	

Network	

User	device	

File	system	

Monolithic	Design	

System	

Network	

User	input	

File	system	

Network	

User	device	

File	system	

9/12/17	

15	

Component	Design	

Network	

User	input	

File	system	

Network	

User	device	

File	system	

Component	Design	

Network	

User	input	

File	system	

Network	

User	device	

File	system	

9/12/17	

16	

Component	Design	

Network	

User	input	

File	system	

Network	

User	device	

File	system	

Implemen,ng	Confinement	

Confinement:			ensure	misbehaving	app	cannot	harm	rest	of	system	

Can	be	implemented	at	many	levels:	

– Hardware:			run	applicaGon	on	isolated	hw		(air	gap)	
	

	
	

	
	 	 		 air	gap	 network	1	Network	2	

app	1	 app	2	

9/12/17	

17	

Implemen,ng	Confinement	

Confinement:			ensure	misbehaving	app	cannot	harm	rest	of	system	

Can	be	implemented	at	many	levels:	

– Virtual	machines:			isolate	OS’s	on	a	single	machine			

Virtual	Machine	Monitor		(VMM)	

OS1	
	

OS2	
	

app1	 app2	

Implemen,ng	Confinement	

Confinement:			ensure	misbehaving	app	cannot	harm	rest	of	system	

Can	be	implemented	at	many	levels:	

– Process:					System	Call	InterposiGon	
							Isolate	a	process	in	a	single	operaGng	system	

	

OperaGng	System	

process	2	

process	1	

9/12/17	

18	

Implemen,ng	Confinement	

Confinement:			ensure	misbehaving	app	cannot	harm	rest	of	system	

Can	be	implemented	at	many	levels:	

– Threads:						Sokware	Fault	IsolaGon	(SFI)	

• IsolaGng	threads	sharing	same	address	space			

– Applica,on:		e.g.			browser-based	confinement	

	
	

System	Call	Interposi,on	
[Goldberg+,	USENIX	Security’96]	

• Goal:	monitor	sys	calls	and	block	unauthorized	calls	
•  Implemented	with	Linux	ptrace:				process	tracing	

	process	calls:					ptrace	(…	,		pid_t		pid	,		…)	
	and	wakes	up	when		pid		makes	sys	call	

	
	
	
	
	
	

Challenge:	how	to	establish	policy	for	which	calls	to	block?	

OS	Kernel	

monitored	
applica,on	
(browser)	

monitor	

user	space	

open(“/etc/passwd”,		“r”)	

9/12/17	

19	

Impact	of	Confinement	on	Security	
[Nayak+,	RAID	2014]	

37	

0.4

0.6

0.8

1.0

0 10 20 30 40 50
Months since product installed

“N
o

ex
pl

oi
t”

pr
ob

ab
ili

ty

Adobe Reader 10, 11

Adobe Reader 7
Adobe Reader 8

Adobe Reader 9

Introduc,on	of		
protected	mode		

(sandbox)	

Confinement:	Summary	
• Many	sandboxing	techniques:	

	Physical	air	gap,			Virtual	air	gap	(VMMs),	
	System	call	interposi?on,		So@ware	Fault	isola?on	
	Applica?on	specific	(e.g.	Javascript	in	browser)	

• Oken	complete	isolaGon	is	inappropriate	

– Apps	need	to	communicate	through	regulated	interfaces	

•  Hardest	aspects	of	sandboxing:	
–  Specifying	policy:				what	can	apps	do	and	not	do	
– PrevenGng	covert	channels	

9/12/17	

20	

Review	of	Lecture	

• What	did	we	learn?	
–  Principals,	reference	monitor,	principle	of	least	privilege	

–  ACLs,	capabiliGes,	confused	deputy	
–  Sandboxing	
–  StaGsGcal	inference	

• Sources	
–  Dan	Boneh,	John	Mitchell,	Vitaly	ShmaGkov	

• What’s	next?	
–  Network	security	basics	

39	

