
4/12/16	

1	

File	Input	/	Output	

Prof.	Tudor	Dumitraș	
Assistant	Professor,	ECE	
University	of	Maryland,	College	Park	

ENEE	140	

h>p://ter.ps/enee140		

Today’s	Lecture	
• Where	we’ve	been	
–  Scalar	data	types		
–  Arrays	and	strings	
–  FuncLons	
–  Random	number	generaLon	
–  Control	flow	
–  Structuring	complex	programs	

• Where	we’re	going	today	
–  2D	arrays	
–  File	Input/Output	
–  Project	3	

• Where	we’re	going	next	
–  More	file	I/O	(low-level	funcLons)	

2	



4/12/16	

2	

Two-Dimensional	Arrays	

• Two-dimensional	arrays	
int		a[3][4];	 	int	array	with	3	rows	and	4	columns	(12	elements)	
–  Think	of	this	as	3	arrays	with	4	elements	each	

• Working	with	2D	arrays	
a[0][0]	=	0;	 	access	element	on	first	row	and	first	column	
a[1][2]	=	0;	 	access	element	on	row	1	and	column	2	
a[0][4]	=	0;	 	error:	index	out	of	bounds	
a[3][0]	=	0;	 	error:	index	out	of	bounds	
–  Use	2D	arrays	to	represent	matrices	 3	

Needed	for	Project	3	

Text	File	I/O	
• Declaring	and	manipulaLng	file	variables	

#include	<stdio.h>	
FILE	*file; 	 	 	 	 	declare	the	file	variable	

–  Opening	
file	=	fopen(“filename.txt”,	“r”);	 	open	file	for	reading	
• Mode	“r”:	open	exisLng	file	for	reading	
• Mode	“w”:	open	file	for	wriLng	and	erase	exisLng	content	
• Mode	“a”:	open	file	for	wriLng	and	append	a]er	exisLng	content	
• Opening	a	file	in	modes	“a”	or	“w”	will	create	the	file	if	it	doesn’t	already	exist	
• The	fopen()	funcLon	returns	NULL	if	there	is	an	error	

–  Closing	
fclose(file); 	 	 	 	close	file	

•  Frequent	mistake:	Not	closing	all	the	files	you	have	opened	 4	

mode	



4/12/16	

3	

Text	File	I/O	–	conQnued	
•  Declaring	and	manipulaLng	file	variables	

#include	<stdio.h>	
FILE	*file; 	 	 	 	 	declare	the	file	variable	
int	i;	
char	line[256]; 	 	 	 		

–  Reading	
fscanf(file,	“%d”,	&i); 	 	 	like	scanf()	

i	=	getc(file); 	 	 	 	like	getchar()	
fgets(line,	256,	file); 	 	 	read	an	enLre	line	
	

–  WriLng	
fprintf(file,	“%d”,	i); 	 	 	like	prin`()	
putc(i,	file); 	 	 	 	like	putchar()	

fputs(line,	file); 	 	 	 	write	an	enLre	line	
	

•  The	file	must	be	open	in	order	to	read	or	write	 5	

A	Common	PaTern:	Reading	a	File	Line-by-Line	
#include	<stdio.h>	
	
char	line[MAX_LINE];	
int	a,	b;	
FILE	*file; 	 	 	 	 	variable	represenLng	the	file	
	
file	=	fopen("myfile.txt",	"r"); 	 	open	file	for	reading	
	
if	(file	==	NULL)	{ 	 	 	 	fopen()	failed	
	printf	("Could	not	open	the	myfile.txt	file.\n");		
				exit	(-1);		
}	
	
...	
fgets(line,	MAX_LINE,	file);		 	 	read	a	line	of	text	from	the	file	
sscanf(line,	"%d	%d",	&a,	&b);	 	 	parse	line	with	sscanf()	
...	
	
fclose(file);	 	 	 	 	close	file	 6	



4/12/16	

4	

PosiQon	in	the	File	

• When	operaLng	on	a	file,	you	read/write	data	sequenLally		

• You	can	change	the	current	posiLon	in	the	file	
rewind(file); 	 	 	go	back	to	the	beginning	

	
	

fseek(file,	0,	SEEK_END); 	go	to	the	end	of	the	file	
–  whence==SEEK_SET:	move	offset	bytes	a]er	the	beginning	of	the	file	

–  whence==SEEK_CUR:	move	offset	bytes	a]er	the	current	posiLon	

–  whence==SEEK_END:	move	offset	bytes	a]er	the	end	of	the	file	
(offset	may	be	negaLve)	

7	

offset	 whence	

Special	Files	
•  stdio,	stdout,	stderr	

fscanf(stdin,	“%d”,	&i); 	 	read	from	standard	input	
fprintf(stdout,	“%d”,	i);	 	write	to	standard	output	
fprintf(stderr,	“%d”,	i);	 	write	to	standard	error	stream	
	

•  You	don’t	have	to	open	or	close	these	special	files	

•  By	default,	they	are	associated	with	the	console	
–  You	can	redirect	them	from	the	command	line	
prog	<infile.txt 	 	 	stdin	redirected	to	infile.txt	
prog	>outfile.txt 	 	 	stdout	redirected	to	ou`ile.txt	
prog	2>errfile.txt 	 	 	stderr	redirected	to	errfile.txt	
prog1	|	prog2 	 	 	pipe	stdout	of	prog1	into	stdin	of	prog2	
	
	 8	



4/12/16	

5	

Review:	FormaTed	Input	
•  You	can	read	from	stdin,	from	a	file	or	from	a	string	

FILE	*file; 	 	 	 		
int		read;	
char	string[256]; 	 	 	 		
read	=	scanf(format,	vars); 	 	read	from	standard	input	
read	=	fscanf(file,	format,	vars); 	read	from	file	
read	=	sscanf(string,	format,	vars); 	read	from	string	
	

•  These	funcLons	allow	you	to	read	primiLve	data	types	(format	
specifiers	(%d,	%u,	%f,	etc.)	and	strings	(format	specifier	%s)	
–  Remember	to	put	an	&	before	each	variable	you	are	reading,	e.g.		
scanf(“%d”,	&a);	

•  The	Xscanf()	funcLons	return	the	number	of	variables	read	
–  Return	is	0:	the	input	did	not	match	the	format	provided	
–  Return	is	EOF:	the	end-of-file	was	reached	 9	

Aside:	Pointer	NotaQon	in	C	
• The	&	and	*	operators	corresponds	to	the	pointer	notaLon	in	C	
–  A	pointer	is	the	memory	address	of	a	variable	
–  &	and	*	are	unary	operators	(they	have	a	single	operand)	
–  *	is	used	for	declaring	pointer	variables:	

• *file	is	a	pointer	to	a	FILE	data	structure	
–  &	is	used	for	gegng	a	pointer	to	an	exisLng	variable	
• &a	is	the	address	of	variable	a	

•  Internally,	C	arrays	are	pointers	
–  You	may	see	strings	declared	as	char	s[]	or	char	*s		
–  Declaring	an	array	of	strings:	
char	*array_of_strings[]; 		

• Pointer	operaLons	will	be	covered	in	ENEE	150	
10	



4/12/16	

6	

Review:	FormaTed	Output	
•  You	can	write	to	stdout,	to	a	file,	or	to	a	string		

FILE	*file; 	 	 	 		
int		read;	
char	s[MAX_S]; 	 	 	 		
printf(format,	vars); 	 	print	to	standard	output	
fprintf(file,	format,	vars); 	print	to	file	
sprintf(s,	format,	vars);	 	print	to	string	
	

•  	format	uses	the	same	specifiers	as	the	Xscanf	funcLons	
–  AddiLonally,	may	specify	the	width	and	precision,	e.g.	“%4.2f”	
–  Width	or	precision	may	be	specified	as	*:	read	it	from	next	argument	
printf(“%.*s”,	MAX_S,	s); 	print	at	most	MAX_S	chars	from	s	

–  	For	Xscanf,	there	is	no	modifier	like	*	for	printf	
–  For	all	specifiers	and	modifiers,	see	Chapter	7.2	or	type	man	printf	

• With	sprin],	you	must	be	careful	not	to	exceed	the	size	of	the	string!	

Pushing	Back	Characters	
• We’ve	seen:	character	I/O	

c	=	getc(file); 	 	read	a	character	from	file		
putc(c,	file); 	 	write	a	character	to	file		
	

• Can	also	push	a	character	back	to	the	input	stream	
ungetc(c,	file); 	 	c	will	be	returned	by	the	next	read	operaLon	
	

• The	forma>ed	I/O	funcLons	(fscanf,	fprin`)	are	implemented	
using	the	character	I/O	funcLons	
–  Ability	to	push	back	characters	is	needed	when	reading	forma>ed	numbers		
–  You	know	that	you	have	all	the	digits	of	the	number	when	you	read	a	non-
digit	character	

–  But	that	character	may	be	part	of	the	next	forma>ed	input	requested	
(you’ve	read	one	character	too	far)	=>	push	it	back	to	the	stream	

12	



4/12/16	

7	

Status	of	File	Streams	

• File	operaLons	interact	with	hardware	devices		
–  These	operaLons	may	fail	

–  You	must	be	able	to	disLnguish	between	these	errors	and	reaching	EOF	
during	normal	file	operaLons	

	

• You	can	check	the	status	of	your	FILE*	stream	
FILE	*file;	
if	(ferror(file))	{…} 	 	check	if	an	error	occurred		

if	(feof(file))	{…} 	 	check	if	you	reached	EOF	

rewind(file); 	 	 	rewind	clears	the	EOF	and	error	flags	
	

13	

Error	Checking	
•  If	you	receive	an	error,	you	can	print	an	error-specific	message	

#include	<stdio.h>	
FILE	*file;	
if	(	(file=fopen(“my_file.txt”,"r"))	==	NULL)	{	

	perror(“Cannot	open	file”); 	prints	a	message	describing	the	error	
	exit(-1);	

}	
	

•  perror()	appends	an	error-specific	message	to	the	text	
provided	and	prints	it	to	stderr	
–  You	may	also	print	addiLonal	error	messages	to	stderr	with		
fprintf(stderr,	…)	

• Good	programming	pracQce:	check	the	return	values	of	all	the	
funcQons	you	invoke	–	an	error	may	have	occurred!	

14	



4/12/16	

8	

Error	Checking:	Examples	
#include	<stdio.h>	
	
FILE	*file;	
unsigned	options;	
	
if	(	(file=fopen(“my_file.txt”,"r"))	==	NULL)	{	

	perror(“Cannot	open	file	for	reading”);	
	exit(-1);	 	 	 	cannot	proceed:	file	is	not	opened	

}	
	
if	(	fscanf(file,	"%u",	&options)	<	1	)	{	

	fprintf(stderr,	“File	must	start	with	an	unsigned	int”);	
}	
	
printf(“Read	%u	from	the	file\n”,	options);	
	
if	(	ferror(stdout)	)	{	

	perror	(“Error	writing	to	stdout”);	
}	 15	

Review	of	Lecture	
• What	did	we	learn?	
–  2D	arrays	
–  Opening	and	closing	files	
–  Changing	posiLon	in	file:	rewind,	fseek	
–  stdin,	stdout,	stderr	and	redirecLng	program	input	or	output	
–  Review	of	forma>ed	I/O	
–  Error	checking	

•  Next	lecture	
–  Low	level	file	I/O	

•  Assignments	for	this	week	
–  Read	K&R	Chapters	6.2,	6.3,	6.7,	6.8,	8.1,	8.2,	8.3,	8.4	
–  Homework:	lab10.pdf	(on	h>p://ter.ps/enee140),	due	on	Friday	at	11:59	pm	
–  Quiz	9,	due	on	Monday	at	11:59	pm	
–  Project	3:	enee140_s15_p3.pdf	(on	h>p://ter.ps/enee140),	due	on	May	10	at	
11:59	pm	


