
4/5/16	

1	

Control	Flow	

Prof.	Tudor	Dumitraș	
Assistant	Professor,	ECE	
University	of	Maryland,	College	Park	

ENEE	140	

h>p://ter.ps/enee140		

Today’s	Lecture	
• Where	we’ve	been	

–  Scalar	data	types	(int,	long,	float,	double,	char)	
–  Basic	control	flow	(while	and	if)	
–  FuncPons	
–  Random	number	generaPon	
–  Arrays	and	strings	
–  Variable	scope	
–  Header	and	source	files	

• Where	we’re	going	today	
–  Other	control	flow	statements	
–  Project	2	Q&A	
	

• Where	we’re	going	next	
–  File	Input/Output	 2	

4/5/16	

2	

Review:	if-else	

• EvaluaPng	a	mulP-way	decision	
– What’s	the	difference	between	these	two	constructs:	

3	

if	(cond1)	{	

	statement1;	

}	

if	(cond2)	{	

	statement2;	

}	

…	

if	(cond1)	{	

	statement1;	

}	else	if	(cond2)	{	

	statement2;	

}	else	{	

	…	

•  An	else	branch	is	associated	with	the	closest	if	that	lacks	an	else	
–  Common	source	of	errors	in	C	programs	

•  Good	programming	pracPce:	use	curly	braces	around	if	and	else	
branches	
–  Especially	if	you	have	nested	ifs		

Both	statements		
may	be	executed	

Only	one	statement		
is	executed	

“None	of	the	above”	UncondiJonal	execuPon	

Review	of	Loops	
•  Loops	are	used	for	repeaPng	statements	in	a	cycle,	unPl	a	
condiPon	becomes	false	

• We’ve	seen	
while	(condition)	{	 	 	condi&on	tested	before	the	loop	body

	statements 	 	 		
}	
	
for	(init;	condition;	increment)	{	 		

	statements 	 	 		
	
}	
	

• for	loop	variaPons	
for	(;;)	{	…	}	 	 	 	infinite	loop	
for	(a=0,	i=0;	…	;	…)	{	…	}	 	mulPple	iniPalizaPons,	separated	by	,	

init;	
while	(condition)	{	

	statements	
	increment;	

}
	

equivalent	to	

4/5/16	

3	

do-while	Loops	

•  In	C	there	is	another	kind	of	loop	
do	{	 	 		

	statements 	 	 		
}	while	(condition) 	 	 	condi&on	is	tested	aLer	the	loop	body	

	

• With	a	do-while	loop,	the	body	is	always	executed	at	least	once	
– With	while	and	for	loops,	the	condiPon	is	tested	before	each	iteraPon	=>	
the	body	is	not	executed	if	the	condiPon	is	false	when	entering	the	loop	

5	

Invariants	

• Contracts	that	your	code	must	not	breach	
–  Loop	invariant:	expression	that	is	true	when	you	enter	the	loop	and	
remains	true	during	each	loop	iteraPon		

–  Pre-condiJon:	expression	that	is	true	before	entering	the	loop	
–  Post-condiJon:	expression	that	is	true	aier	exiPng	the	loop	

//	From	strncpy(),	as	implemented	in	class	

for	(i=0;	i	<	dst_size-1	&&	src[i]	!=	'\0';	i++)	{	

	dst[i]	=	src[i];	

}	

	

dst[i]	=	'\0';	

Pre-condiJon:	
i	==	0	

Loop	invariants:	
i	<	dst_size	
dst[i]	!=	`\0`	

Post-condiJons:	
i	<	dst_size	
have	copied	i	chars	

4/5/16	

4	

Invariants	and	Defensive	Programming	
•  AsserPng	invariants	

#include	<assert.h>	
assert(condition);	 	exits	the	program	if	condi&on	is	false	
	
–  Use	assert()	liberally	
–  AsserPons	allow	you	to	diagnose	mistakes	in	your	program	
–  They	also	reveal	your	program’s	invariants	to	other	programmers	who	review	
your	code	

for	(i=0;	i	<	dst_size-1	&&	src[i]	!=	'\0';	i++)	{	
	dst[i]	=	src[i];	
	assert	(dst[i]	!=	`\0`);	

}	
	
assert	(i	<	dst_size);	
dst[i]	=	'\0’;	

7	

Early	Loop	Exit	
• break	and	conPnue	

–  break	causes	the	innermost	loop	or	switch	statement	(described	next)	to	exit	
–  continue	skips	over	the	remaining	statements	in	the	loop	body	and	starts	the	
next	iteraPon	

for	(x=1;	x<10;	x++)	{	
	if	(x	==	5)		
	 	break;	 	 	//	exit	the	loop	
	…		

}	
…	
	

• goto	label	
–  Jumps	to	a	label	that	can	be	placed	anywhere	in	the	code	
–  goto	makes	it	difficult	to	reason	about	invariants	=>	DO	NOT	USE!!	
–  The	only	accepted	modern	usage	of	goto	is	to	break	out	of	nested	loops	

8	

4/5/16	

5	

break	and	continue	

• So,	how	many	Pmes	does	this	loop	execute:		
for	(i=0;	i<10;	i++)	{	

		if	(i	<	5)	

				continue;	
	

		if	(i	%	2)	
				break;	

}	

	

9	

The	switch	Statement	

• We’ve	seen	
	
if	(a	==	1	||	a	==	2)	{	

	printf	(“one-two”);	

}	else	if	(a==3)	{ 		
	printf	(“three”);	

}	else	{	
	printf	(“other”);	

}	 	 	 		

10	

•  The	switch	statement	implements	a	
mulP-way	decision	
switch	(a)	{		
case	1:		
case	2:	

	printf	(“one-two”);	
	break;	

case	3:	
	printf	(“three”);	
	break;	

default:	
	printf	(“other”);	

}	
	•  Note:	switch	tests	whether	an	expression	matches	a	set	of	

constant	integer	values	

4/5/16	

6	

CondiJonal	Expressions	

• We’ve	seen	
if	(a	>	10)	{	

	b	=	1;	

}	else	{ 	 	 		
	b	=	2;	 	 	 		

• CondiPonal	expression		
b	=	(a	>	10)	?	1	:	2;	
	

11	

Review	of	Logical	and	RelaJonal	Operators	
• We’ve	seen:		

	==	!=	<	>	<=	>= 	 	 	relaPonal	operators	
–  We	have	used	relaPonal	operators	for	tesPng	simple	condiPons	

	a	==	b	 	 	 	 	equality	tesPng	

• More	complex	condiPons:	use	logical	operators	
	!cond1		 	 	 	cond1	is	not	true	
	cond1	&&	cond2 	 	both	cond1	and	cond2	are	true	
	cond1	||	cond2 	 	either	cond1	or	cond2	are	true	

•  De	Morgan’s	laws	
	!(cond1	&&	cond2) 	same	as		 	!cond1	||	!cond2	

	!(cond1	||	cond2) 	same	as		 	!cond1	&&	!cond2	
–  More	on	this	in	ENEE	244	

	 12	

4/5/16	

7	

Review	of	Logical	Values	

• We’ve	seen:	logical	values	
–  The	results	of	relaPonal	operators	can	be	assigned	to	variables	
• The	type	of	these	variables	is	integer:	0	is	false	and	1	is	true	
•  In	a	condiPon,	any	integer	other	than	0	will	be	accepted	as	true	

	int 	a	=	(1==0);	 	 	 	a	is	0	

	int 	b	=	!a;	 	 	 	b	is	1	

–  You	can	apply	logical	operators	to	these	variables		
	

13	

a	 b	 !a	 !b	 a	&&	b	 a	||	b	

NOT	a	

0	 0	 1	

0	 1	 1	

1	 0	 0	

1	 1	 0	

NOT	b	

1	

0	

1	

0	

a	AND	b	

0	

0	

0	

1	

a	OR	b	

0	

1	

1	

1	

Review	of	Bitwise	vs.	Logical	Operators	

• Note:	&	is	bitwise	AND,	while	&&	is	logical	AND		
(what’s	the	difference?)	

	unsigned	a,	b; 	 	equality	tesPng	

	a	=	1;	 	 	 																							in	binary	

	b	=	2;	 	 	 																							in	binary	
	assert(a	&&	b); 	 		

	assert(a	&	b); 	 		

	

14	

true:	both	a	and	b	are	!=	0	

false:	binary	a	&	b	==	0000	0000	
	

0000	0001		
0000	0010		

4/5/16	

8	

Review	of	Operator	Precedence		
•  Operator	precedence	(complete	rules	in	K&R	Table	2.1)	

1.  []	.		
2.  !	~	++	--	+	-	*	(as	in	FILE	*f)	&	(type)	sizeof	 		(unary	operators)	
3.  *	/	%	
4.  +	-	
5.  <<	>>	
6.  <	<=	>	>=	
7.  ==	!=	
8.  &	
9.  ^	
10.  |	
11.  &&	
12.  ||	
13.  ?:	
14.  =	+=	-=	*=	/=	%/	&=	^=	|=	<<=	>>=	

•  Rule	of	thumb:		
–  Division	and	mulPplicaPon	come	before	addiPon	and	subtracPon	
–  Put	parentheses	around	everything	else	

15	

Review	of	Lecture	
•  What	did	we	learn?	

–  The	do-while	loop	
–  Early	loop	exit	
–  The	switch	statement	
–  CondiPonal	expressions	
–  Loop	invariants	
–  Review	of	logical	operators,	bitwise	operators,	and	operator	precendence	

•  Next	lecture	
–  File	input/output	

•  Reminder:	Project	2	due	on	Monday,	April	11	

•  Assignments	for	this	week	
–  Read	K&R	Chapters	5.10,	7.1,	7.5,	7.6,	7.7,	B1	and	review	K&R	Chapters	7.2,	7.4		
–  Weekly	challenge:	cat.c			
–  Homework:	lab09.pdf	(on	h>p://ter.ps/enee140),	due	on	Friday	at	11:59	pm	
–  Second	expectaJons	survey	due	on	Friday		
–  Quiz	8	due	on	Monday	 16	

