4/5/16

Control Flow

ENEE 140
\\.ERSITy
. X
Prof. Tudor Dumitras . O‘;
Assistant Professor, ECE PAa) A
University of Maryland, College Park IRYLAS

http://ter.ps/eneel40

Today’s Lecture

e Where we’ve been

Scalar data types (int, long, float, double, char)

Basic control flow (while and if)
Functions

Random number generation

Arrays and strings
— Variable scope
— Header and source files

e Where we're going today

— Other control flow statements
— Project 2 Q&A

e Where we're going next
— File Input/Output

4/5/16

Review: if-else

¢ Evaluating a multi-way decision

— What's the difference between these two constructs:

if (condl) { if (condl) {
statementl; “— statementl;
¥ Both statements } else if (cond2) {
i may be executed
if (cond2) { y statement2; «.__
statement2; } else { Only one statement
} is executed
«——— Unconditional execution TN “None of the above”

e An else branch is associated with the closest if that lacks an else
— Common source of errors in C programs

e Good programming practice: use curly braces around if and else
branches

— Especially if you have nested ifs 3

Review of Loops

e Loops are used for repeating statements in a cycle, until a
condition becomes false

e \We've seen

while (condition) { condition tested before the loop body
statements

}

init;

for (init; condition; increment) { while (condition) {

statements statements
equivalent to .
increment;
')
e for loop variations
for (55) { -} infinite loop
for (a=0, i=0; .. ; ..) { .. } multiple initializations, separated by ,

do-while Loops

e In C there is another kind of loop

do {
statements
}while (condition) condition is tested after the loop body

e With a do-while loop, the body is always executed at least once

— Withwhile and for loops, the condition is tested before each iteration =>
the body is not executed if the condition is false when entering the loop

Invariants

¢ Contracts that your code must not breach

— Loop invariant: expression that is true when you enter the loop and
remains true during each loop iteration

— Pre-condition: expression that is true before entering the loop

— Post-condition: expression that is true after exiting the loop

Pre-condition:
// From strncpy(), as implemented in class i==

for (i=0; i < dst_size-1 && src[i] != '\@'; i++) {
dst[i] = src[i]; Loop invariants:
} i <dst_size
dst[i] !="\0

dst[i] = "\e'; Post-conditions:
i <dst_size

have copied i chars

4/5/16

Invariants and Defensive Programming

e Asserting invariants

#include <assert.h>
assert(condition); exits the program if condition is false

— Use assert() liberally
— Assertions allow you to diagnose mistakes in your program

— They alsao reveal your program’s invariants to other programmers who review
your code

for (i=0; i < dst_size-1 && src[i] != "\@'; i++) {
dst[i] = src[i];
assert (dst[i] != “\07);

}

assert (i < dst_size);
dst[i] = '"\@’;

Early Loop Exit

e break and continue

— break causes the innermost loop or switch statement (described next) to exit

— continue skips over the remaining statements in the loop body and starts the
next iteration

for (x=1; x<10; x++) {
if (x == 5)
break; // exit the loop

e goto label

— Jumps to a label that can be placed anywhere in the code

— goto makes it difficult to reason about invariants => DO NOT USE!!

— The only accepted modern usage of goto is to break out of nested loops

4/5/16

break and continue

¢ So, how many times does this loop execute:

for (i=0; i<10; i++) {
if (i < 5)

continue;

if (1 % 2)
break;

The switch Statement

e \We’'ve seen

if (a==1]| a==2)¢{
printf (“one-two”);

} else if (a==3) {
printf (“three”);

} else {
printf (“other”);

e The switch statement implements a

multi-way decision
switch (a) {
case 1:
case 2:
printf (“one-two”);
break;
case 3:
printf (“three”);
break;
default:
printf (“other”);
}

* Note: switch tests whether an expression matches a set of

constant integer values

10

4/5/16

Conditional Expressions

e \We’'ve seen

if (a > 10) {
b =1;
} else {
b = 2;

¢ Conditional expression
b=(a>10) ? 1 : 2;

11

Review of Logical and Relational Operators

e We've seen:
== l= < > <= >= relational operators

— We have used relational operators for testing simple conditions
a==>b equality testing

e More complex conditions: use logical operators

lcondl cond1 is not true
condl && cond2 both condl1 and cond2 are true
condl || cond2 either cond1 or cond? are true

e De Morgan’s laws
I (condl && cond2) same as lcondl || !cond2
I'(condl || cond2) same as lcondl && !cond2

— More on this in ENEE 244

12

4/5/16

Review of Logical Values

e \We've seen: logical values

— The results of relational operators can be assigned to variables

* The type of these variables is integer: 0 is false and 1 is true

¢ In a condition, any integer other than 0 will be accepted as true
int a = (1==0); ais0
int b = la; bis1

— You can apply logical operators to these variables

NOT a NOTb aAND b aORb
0 0 1 1 0 0
0 1 1 0 0 1
1 0 0 1 0 1
1 1 0 0 1 1
1
Review of Bitwise vs. Logical Operators
¢ Note: & is bitwise AND, while && is logical AND
(what’s the difference?)
unsigned a, b; equality testing
a =1; 0000 0001 in binary
b = 2; 0000 0010in binary
assert(a && b); true: bothaand b are =0
assert(a & b); false: binarya & b ==0000 0000

14

4/5/16

Review of Operator Precedence

e Operator precedence (complete rules in K&R Table 2.1)

1. [] .

2. !~ ++ -- + - * (as in FILE *f) & (type) sizeof (unary operators)
3. */ %

4. + -

5. << >>

6. < <= > >=

7. ==l=

8. &

9. »

10. |

11. &&

12. ||

13. 2

14. = 4= -= *= /= %/ &= "= |= <K= >>=

e Rule of thumb:

— Division and multiplication come before addition and subtraction s

— Put parentheses around everything else

Review of Lecture

e What did we learn?
— The do-while loop
— Early loop exit
— The switch statement
— Conditional expressions
— Loop invariants

— Review of logical operators, bitwise operators, and operator precendence

o Next lecture

— File input/output
e Reminder: Project 2 due on Monday, April 11

e Assignments for this week
— Read K&R Chapters 5.10, 7.1, 7.5, 7.6, 7.7, B1 and review K&R Chapters 7.2, 7.4
— Weekly challenge: cat.c
— Homework: 1ab@9. pdf (on http://ter.ps/eneel40), due on Friday at 11:59 pm
— Second expectations survey due on Friday

— Quiz 8 due on Monday 16

4/5/16

