
3/22/16	

1	

Complex	Programs	

Prof.	Tudor	Dumitraș	
Assistant	Professor,	ECE	
University	of	Maryland,	College	Park	

ENEE	140	

h>p://ter.ps/enee140	

Today’s	Lecture	

• Where	we’ve	been	
–  Scalar	data	types	(int,	long,	float,	double,	char)	
–  Basic	control	flow	(while	and	if)	
–  FuncQons	
–  Random	number	generaQon	

–  Arrays	and	strings	

• Where	we’re	going	today	
–  Structuring	complex	programs	

–  Project	2	

• Where	we’re	going	next	
–  Control	flow		 2	

3/22/16	

2	

Review	of	Arrays	

• Arrays	are	vector	data	types	
–  They	can	hold	mulQple	values	of	the	same	type	

• The	size	of	the	array	must	be	declared	and	not	exceeded	
int		a[10];	 	 	 		
a[0]	=	0;		 	 	 		

a[9]	=	0;		 	 	 		
a[10]	=	0;		 	 	 		

	

• Arrays	can	be	iniQalized,	but	not	assigned	
int	a[3]	=	{1,	2,	3},	b[3]	=	{0,	0,	0};	

b	=	a; 	 	 	 		
3	

syntax	error:	cannot	assign	arrays	

logical	error:	index	out	of	bounds	

FuncHon	Parameters	
•  Scalar	types	(e.g.	int,	float):		
–  Modifying	the	arguments	inside	the	funcQon	does	not	affect	the	original	variables	
–  The	funcQon	operates	on	a	copy	of	the	variable	
int	b,	a	=	2;	
my_function(a); 	 		
b	=	a	+	1; 	 	 	a	is	sQll	2,	regardless	of	what	happens	in	the	funcQon	

•  Vector	types	(e.g.	array,	string):	
–  Modifying	the	elements	of	the	array	inside	the	funcQon	does	change	the	original	variable	
–  The	funcQon	operates	on	the	original	array	
void 	 	 	 	 		
empty_string(char	s[])	 	funcQon	with	string	parameter	
{	

	s[0]	=	‘\0’;	 	 	 		
}	
	
char	str[]	=	“Hello	world”;	
empty_string(str); 	 		
printf(“%s”,	str); 	 	empty	string	“”	is	printed	 4	

3/22/16	

3	

Return	Values	

• The	value	returned	from	a	funcQon	cannot	be	a	vector	type	
–  You	cannot	return	int[]	or	char[]	
–  You	must	return	a	scalar	type,	e.g.	int	or	char	

–  You	can	also	write	a	funcQon	that	does	not	return	anything	(using	void)	

• Common	programming	pracQce	
–  To	perform	operaQons	that	produce	a	scalar	data	type,	write	a	funcQon	
that	returns	the	value	you	are	trying	to	compute	

–  To	manipulate	a	vector	data	type,	write	a	funcQon	that	takes	as	
parameter	the	string	or	array	that	will	hold	the	result	of	the	operaQon	

5	

Copying	Strings	and	Arrays	
•  You	cannot	assign	a	string	or	an	array	
–  Instead,	you	can	copy	the	string	or	array	element-by-element	

•  Copying	an	array	
int	a[3]	=	{1,	2,	3},	b[3]	=	{0,	0,	0},	i;	
for	(i=0;	i	<	3;	i++)	{	

	b[i]	=	a[i]; 	 	 	 	copy	a[]	element-by-element	
}	
	

•  Copying	a	string	
char	src[10]	=	“ENEE	140”,	dst[10];	
strncpy(dst,	src,	sizeof(dst)); 	 	copy	at	most	10	chars	
dst[sizeof(dst)	-	1]	=	'\0'; 	 	ensure	that	dst	is	correctly		

	 	 	 	 	 	terminated	
	 6	

3/22/16	

4	

Command	Line	Arguments	
• We’ve	seen	

cp	file1	file2 	UNIX	command-line	uQliQes	
cal	2014	3 	 	 		
	
	

•  To	retrieve	the	command	line	arguments	in	your	program	
int	main(int	argc,	char	*argv[])	
	
argc 	 	 	Number	of	arguments	provided,	including	the	executable	
argv[0] 	 	Name	of	the	executable	
argv[i] 	 	String	containing	the	ith	argument	
	
–  Example:	
cal	2014	3 	 	argc	=	3	and	argv	=	{“cal”,	“2014”,	“3”}	
	 7	

Command	line	arguments	

Truth	Values	

• The	condiQons	in	while	(…)	or	if	(…)	can	be	assigned	to	variables	
–  The	type	of	these	variables	is	integer:	0	is	false	and	1	is	true	
–  In	a	condiQon,	any	integer	other	than	0	will	be	accepted	as	true	

int 	a	=	(1==0);		 	 	a	is	0	

int 	b	=	(a>=0);		 	 	b	is	1	
int 	c	=	140;	 	 	 		

if	(c)	

	printf(“c	is	true!”); 	the	prin_	statement	is	executed	
	

8	

3/22/16	

5	

Working	with	Files	–	Character	I/O		

•  We’ve	seen:	getchar(),	putchar()	
•  Reading	a	file	character-by-character:	

#include	<stdio.h>	
int	c;	
FILE	*file_in,	*file_out; 	 	 	variables	represenQng	the	files	
	
file_in	=	fopen("input_file.txt",	"r"); 	open	file	for	reading	
file_out	=	fopen("output_file.txt",	"w"); 	open	file	for	wriQng	
	
if	(file_in	==	NULL)	{	 	 	 	fopen()	failed	
	printf	("Could	not	open	the	input_file.txt	file.\n");		
				exit	(-1);		
}	 	 	 	 	 	 	also	do	this	check	for	file_out	
	
while	((c	=	getc(file_in))	!=	EOF)	{	 	read	a	character	from	file_in	
			putc	(c,	file_out);	 	 	 	write	a	character	to	file_out	
}	
	
fclose(file_in);	fclose(file_out);	

•  FILE*	variables	can	be	passed	as	funcQon	parameters	
9	

Needed	for	Project	2	

Header	Files	
•  We’ve	seen	

#include	<stdio.h> 	 	 	Header	files	from	the	standard	library	
#include	<math.h> 	 		
	

•  A	header	file	includes	funcQon	declaraQons	(prototypes)	and	constant	
definiQons	that	are	shared	among	mulQple	C	files	
#include	“crypto.h” 	Include	your	header	file	in	the	C	source	files	
	

•  Must	prevent	mulQple	inclusions	
–  Wrap	everything	inside	the	header	in	an	include	guard	
#ifndef	CRYPTO_H_	
#define	CRYPTO_H_	
…	
	
#endif	/*	CRYPTO_H_*/	

10	

3/22/16	

6	

SpliZng	a	Program	Into	MulHple	Files	
• Another	form	of	modularity	
–  Group	related	funcQons	in	one	.c	source	file	

• Create	one	.h	header	file	and	mulQple	.c	source	files	
–  Put	all	the	shared	declaraQons	in	the	header	file	
–  Put	all	the	funcQon	implementaQons	in	the	source	files	
–  There	must	be	only	one	main()	funcQon	

• Compiling	
–  In	CLion:	add	all	the	.c	and	.h	files	to	the	same	project	
–  On	the	command	line:	gcc	file1.c	file2c.	file3.c	
• Provide	all	the	source	files,	but	not	the	header	file	

11	

Variables	With	the	Same	Name	
•  We’ve	seen	

void	fun() 	 	 		
{	

	int	a; 	 	 	variable	a	declared	inside	funcQon	fun()	
	…	

}	
int	main()		
{	

	int	a; 	 	 	variable	a	declared	inside	funcQon	main()	
	float	a; 	 	error:	cannot	declare	another	variable	named	a	in	main()	
	…	

}	
	

•  a	from	fun()	and	a	from	main()	are	different	variables	
–  The	same	is	true	for	funcQon	parameters	with	the	same	name	

12	

3/22/16	

7	

Variable	Scope	

• Variable	scope	(where	is	the	variable	visible)	
–  Inside	the	block	where	it	is	declared	
• A	block	is	enclosed	in	{	}	

–  Can	also	declare	variables	at	the	start	of	if,	while,	for,	etc.	blocks	
	

while	(condition)	{ 	 	 		
	int	a	=	1; 	 	variable	a	visible	only	inside	while	loop	

	… 	 		
}	

13	

Global	Variables	

• Variables	declared	outside	any	funcQon	
int	a; 	 	 	global	variable	

int	main()		

{	
	…	

}	
	

• Global	variable	scope	
–  Globally	accessible	in	all	the	files	compiled	and	linked	together	

14	

3/22/16	

8	

StaHc	Variables	Declared	Outside	Any	FuncHon	

• Declared	using	keyword	static	
static	int	a; 	 	variable	local	to	current	.c	file	

int	main()		

{	
	…	

}	
	

• Variable	scope	
–  Visible	only	inside	the	.c	file	where	they	are	declared	
–  Can	be	used	to	hold	the	internal	state	of	a	library	

15	

StaHc	Variable	Declared	Inside	A	FuncHon	
•  IniQalized	only	the	first	Qme	when	the	block	is	executed	

void	fun() 	 	 		
{	

	static	int	count_invocations	=	0; 	staQc	variable	
	count_invocaQons++;	
	…	

}	
	

•  StaQc	variables	preserve	their	value	across	funcQon	invocaQons	
–  Same	as	global	variables	

•  Variable	scope	
–  Visible	only	inside	the	funcQon	where	they	are	declared	

16	

3/22/16	

9	

Good	Programming	PracHce	
•  Limit	the	scope	of	your	variables	
–  Declare	variables	inside	funcQons	
–  Use	variables	local	to	a	.c	file	to	store	the	internal	state	of	a	module	

•  Avoid	global	variables	
–  They	break	encapsulaQon	

•  Do	not	include	variable	declaraQons	in	.h	files	
–  Include	only	funcQon	prototypes	and	constants	defined	with	#define		

•  Avoid	staQc	variables	inside	a	funcQon	
–  They	cause	undefined	behavior	when	the	program	execuQon	is	not	sequenQal	

17	

Review	of	Lecture	
•  What	did	we	learn?	

–  FuncQons	with	string	parameters	
–  Command	line	arguments	
–  Truth	values	(result	of	relaQonal	operaQons)	
–  Character	I/O	with	files	
–  Global	and	local	variable	scope		
–  StaQc	variables	
–  Complex	programs:	header	files	and	source	files	

•  Next	week	
–  Mid-term	exam	
–  Next	lecture:	Control	flow	

•  Assignments	for	next	2	weeks	
–  Review	the	material	for	the	mid-term	exam	

•  Mid-term	review	session:	Saturday,	2:30	pm,	AVW	3400		
–  Read	K&R	Chapters	2.11,	2.12,	3.4,	3.5,	3.6,	3.7,	3.8		
–  Weekly	challenge:	check_password_rules.c		and	Quiz	7	(due	on	Monday	aoer	the	exam)	
–  Homework:	lab08.pdf	(on	h>p://ter.ps/enee140),	due	on	Friday	(aoer	the	exam)	at	11:59	pm	
–  Project	2:	enee140_s16_p2.pdf	(on	h>p://ter.ps/enee140),	due	on	April	11	at	11:59	pm	

18	

