3/22/16

Complex Programs
ENEE 140

Prof. Tudor Dumitras

Assistant Professor, ECE 2\
University of Maryland, College Park IRyL

http://ter.ps/eneel40

Today’s Lecture

* Where we’ve been
— Scalar data types (int, long, float, double, char)
— Basic control flow (while and if)
— Functions
— Random number generation

— Arrays and strings

e Where we’re going today
— Structuring complex programs

— Project 2

e Where we’re going next

— Control flow 2

Review of Arrays

e Arrays are vector data types

— They can hold multiple values of the same type

e The size of the array must be declared and not exceeded

int a[1e0];
af[e] = o;
a[9] = o;
\a[l@] = 0; logical error: index out of bounds

e Arrays can be initialized, but not assigned
int 3[3] = {1: 2, 3}) b[3] = {0) 9, 0};
\ b = a; syntax error: cannot assign arrays

3

Function Parameters

e Scalar types (e.g. int, float):
— Modifying the arguments inside the function does not affect the original variables
— The function operates on a copy of the variable
int b, a = 2;
my_function(a);
b=a+1; a is still 2, regardless of what happens in the function

e Vector types (e.g. array, string):
— Modifying the elements of the array inside the function does change the original variable
— The function operates on the original array

void
empty_string(char s[]) function with string parameter
{
s[@] = “\@’;
¥

char str[] = “Hello world”;
empty_string(str);
printf(“%s”, str); empty string “*’ is printed

3/22/16

3/22/16

Return Values

¢ The value returned from a function cannot be a vector type
— You cannot return int[] or char[]

— You must return a scalar type, e.g. int or char

— You can also write a function that does not return anything (using void)

e Common programming practice

— To perform operations that produce a scalar data type, write a function
that returns the value you are trying to compute

— To manipulate a vector data type, write a function that takes as
parameter the string or array that will hold the result of the operation

Copying Strings and Arrays

¢ You cannot assign a string or an array

— Instead, you can copy the string or array element-by-element

e Copying an array
int a[3] = {1, 2, 3}, b[3] = {0, 0, 0}, i;
for (i=0; i < 3; i++) {
b[i] = a[i];

copy a[] element-by-element
¥

e Copying a string

char src[10] = “ENEE 140”, dst[10];

strncpy(dst, src, sizeof(dst)); copy at most 10 chars
dst[sizeof(dst) - 1] = "\@';

ensure that dst is correctly
terminated

3/22/16

Command Line Arguments

e \We’'ve seen

cp filel file2 UNIX command-line utilities

cal 2014 3

H—I
Command line arguments

¢ To retrieve the command line arguments in your program

int main(int argc, char *argv[])

argc Number of arguments provided, including the executable
argv([o] Name of the executable
argv[i] String containing the it argument
— Example:
cal 2014 3 argc = 3 andargv = {“cal”, “2014”, “3”}
7
Truth Values

¢ The conditions inwhile (..) or if (..) can be assigned to variables
— The type of these variables is integer: 0 is false and 1 is true

— In a condition, any integer other than 0 will be accepted as true

int a = (1==0); ais0
int b = (a>=0); bis1
int c = 149;
if (c)
printf(“c is true!”); the printf statement is executed

Working with Files — Character I/0
Needed for Project 2

e We've seen: getchar(), putchar()
¢ Reading a file character-by-character:
#include <stdio.h>

int c;
FILE *file_in, *file_out; variables representing the files
file_in = fopen("input_file.txt", "r"); open file for reading
file_out = fopen("output_file.txt", "w"); open file for writing
if (file_in == NULL) { fopen() failed
printf ("Could not open the input_file.txt file.\n");
exit (-1);
} also do this check for file_out
while ((c = getc(file_in)) != EOF) { read a character from file_in
putc (c, file_out); write a character to file_out
¥

fclose(file_in); fclose(file_out);
o FILE* variables can be passed as function parameters

Header Files

e We've seen

#include <stdio.h> Header files from the standard library
#include <math.h>

e A header file includes function declarations (prototypes) and constant
definitions that are shared among multiple C files

#include “crypto.h” Include your header file in the C source files

e Must prevent multiple inclusions

— Wrap everything inside the header in an include guard
#ifndef CRYPTO H_
#tdefine CRYPTO_H_

#endif /* CRYPTO_H_*/

10

3/22/16

Splitting a Program Into Multiple Files

e Another form of modularity

— Group related functions in one .c source file

¢ Create one .h header file and multiple .c source files
— Put all the shared declarations in the header file
— Put all the function implementations in the source files
— There must be only one main() function

e Compiling
— In CLion: add all the .c and .h files to the same project

— On the command line: gcc filel.c file2c. file3.c
* Provide all the source files, but not the header file

11

Variables With the Same Name

e We've seen

void fun()
{
int a; variable a declared inside function fun()
}
int main()
{
int a; variable a declared inside function main()
float a; error: cannot declare another variable named a in main()
}

e afrom fun() and a frommain() are different variables

— The same is true for function parameters with the same name

12

3/22/16

Variable Scope

e Variable scope (where is the variable visible)

— Inside the block where it is declared
e A blockis enclosed in { }

— Can also declare variables at the start of if, while, for, etc. blocks

while (condition) {

int a = 1; variable a visible only inside while loop

13

Global Variables

e Variables declared outside any function
int a; global variable
int main()

{

¢ Global variable scope

— Globally accessible in all the files compiled and linked together

14

3/22/16

Static Variables Declared Outside Any Function

e Declared using keyword static
static int a; variable local to current .c file
int main()

{

¢ Variable scope
— Visible only inside the .c file where they are declared

— Can be used to hold the internal state of a library

15

Static Variable Declared Inside A Function

¢ Initialized only the first time when the block is executed
void fun()

{

static int count_invocations = ©; staticvariable
count_invocations++;

e Static variables preserve their value across function invocations

— Same as global variables

¢ Variable scope

— Visible only inside the function where they are declared

16

3/22/16

Good Programming Practice

Limit the scope of your variables

— Declare variables inside functions

— Use variables local to a .c file to store the internal state of a module

Avoid global variables

— They break encapsulation

Do not include variable declarations in .h files

— Include only function prototypes and constants defined with #define

Avoid static variables inside a function

— They cause undefined behavior when the program execution is not sequential

17

Review of Lecture
What did we learn?

Functions with string parameters

Command line arguments

Truth values (result of relational operations)
Character 1/0 with files

Global and local variable scope

Static variables

Complex programs: header files and source files

Next week

Mid-term exam

Next lecture: Control flow

Assignments for next 2 weeks

Review the material for the mid-term exam

e Mid-term review session: Saturday, 2:30 pm, AVW 3400

Read K&R Chapters 2.11, 2.12, 3.4, 3.5, 3.6, 3.7, 3.8

Weekly challenge: check_password_rules.c and Quiz 7 (due on Monday after the exam)
Homework: 1ab@8. pdf (on http://ter.ps/eneel40), due on Friday (after the exam) at 11:59 pm
Project 2: eneel40_s16_p2.pdf (on http://ter.ps/eneel40), due on April 11 at 11:59 pm

18

3/22/16

