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Today’s Lecture

* Where we’ve been
— Scalar data types (int, long, float, double, char)
— Basic control flow (while and if)
— Functions
— Random number generation

— Arrays and strings

e Where we’re going today
— Structuring complex programs

— Project 2

e Where we’re going next

— Control flow 2




Review of Arrays

e Arrays are vector data types

— They can hold multiple values of the same type

e The size of the array must be declared and not exceeded

int a[1e0];
af[e] = o;
a[9] = o;
\a[l@] = 0; logical error: index out of bounds

e Arrays can be initialized, but not assigned
int 3[3] = {1: 2, 3}) b[3] = {0) 9, 0};
\ b = a; syntax error: cannot assign arrays
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Function Parameters

e Scalar types (e.g. int, float):
— Modifying the arguments inside the function does not affect the original variables
— The function operates on a copy of the variable
int b, a = 2;
my_function(a);
b=a+1; a is still 2, regardless of what happens in the function

e Vector types (e.g. array, string):
— Modifying the elements of the array inside the function does change the original variable
— The function operates on the original array

void
empty_string(char s[]) function with string parameter
{
s[@] = “\@’;
¥

char str[] = “Hello world”;
empty_string(str);
printf(“%s”, str); empty string “*’ is printed
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Return Values

¢ The value returned from a function cannot be a vector type
— You cannot return int[] or char[]

— You must return a scalar type, e.g. int or char

— You can also write a function that does not return anything (using void)

e Common programming practice

— To perform operations that produce a scalar data type, write a function
that returns the value you are trying to compute

— To manipulate a vector data type, write a function that takes as
parameter the string or array that will hold the result of the operation

Copying Strings and Arrays

¢ You cannot assign a string or an array

— Instead, you can copy the string or array element-by-element

e Copying an array
int a[3] = {1, 2, 3}, b[3] = {0, 0, 0}, i;
for (i=0; i < 3; i++) {
b[i] = a[i];

copy a[ ] element-by-element
¥

e Copying a string

char src[10] = “ENEE 140”, dst[10];

strncpy(dst, src, sizeof(dst)); copy at most 10 chars
dst[sizeof(dst) - 1] = "\@';

ensure that dst is correctly
terminated
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Command Line Arguments

e \We’'ve seen

cp filel file2 UNIX command-line utilities

cal 2014 3

H—I
Command line arguments

¢ To retrieve the command line arguments in your program

int main(int argc, char *argv[])

argc Number of arguments provided, including the executable
argv([o] Name of the executable
argv[i] String containing the it argument
— Example:
cal 2014 3 argc = 3 andargv = {“cal”, “2014”, “3”}
7
Truth Values

¢ The conditions inwhile (..) or if (..) can be assigned to variables
— The type of these variables is integer: 0 is false and 1 is true

— In a condition, any integer other than 0 will be accepted as true

int a = (1==0); ais0
int b = (a>=0); bis1
int c = 149;
if (c)
printf(“c is true!”); the printf statement is executed




Working with Files — Character I/0
Needed for Project 2

e We've seen: getchar(), putchar()
¢ Reading a file character-by-character:
#include <stdio.h>

int c;
FILE *file_in, *file_out; variables representing the files
file_in = fopen("input_file.txt", "r"); open file for reading
file_out = fopen("output_file.txt", "w"); open file for writing
if (file_in == NULL) { fopen() failed
printf ("Could not open the input_file.txt file.\n");
exit (-1);
} also do this check for file_out
while ( (c = getc(file_in)) != EOF ) { read a character from file_in
putc (c, file_out); write a character to file_out
¥

fclose(file_in); fclose(file_out);
o FILE* variables can be passed as function parameters

Header Files

e We've seen

#include <stdio.h> Header files from the standard library
#include <math.h>

e A header file includes function declarations (prototypes) and constant
definitions that are shared among multiple C files

#include “crypto.h” Include your header file in the C source files

e Must prevent multiple inclusions

— Wrap everything inside the header in an include guard
#ifndef CRYPTO H_
#tdefine CRYPTO_H_

#endif /* CRYPTO_H_*/
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Splitting a Program Into Multiple Files

e Another form of modularity

— Group related functions in one .c source file

¢ Create one .h header file and multiple .c source files
— Put all the shared declarations in the header file
— Put all the function implementations in the source files
— There must be only one main() function

e Compiling
— In CLion: add all the .c and .h files to the same project

— On the command line: gcc filel.c file2c. file3.c
* Provide all the source files, but not the header file
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Variables With the Same Name

e We've seen

void fun()
{
int a; variable a declared inside function fun()
}
int main()
{
int a; variable a declared inside function main()
float a; error: cannot declare another variable named a in main()
}

e afrom fun() and a frommain() are different variables

— The same is true for function parameters with the same name

12
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Variable Scope

e Variable scope (where is the variable visible)

— Inside the block where it is declared
e A blockis enclosed in { }

— Can also declare variables at the start of if, while, for, etc. blocks

while (condition) {

int a = 1; variable a visible only inside while loop
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Global Variables

e Variables declared outside any function
int a; global variable
int main()

{

¢ Global variable scope

— Globally accessible in all the files compiled and linked together

14
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Static Variables Declared Outside Any Function

e Declared using keyword static
static int a; variable local to current .c file
int main()

{

¢ Variable scope
— Visible only inside the .c file where they are declared

— Can be used to hold the internal state of a library
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Static Variable Declared Inside A Function

¢ Initialized only the first time when the block is executed
void fun()

{

static int count_invocations = ©; staticvariable
count_invocations++;

e Static variables preserve their value across function invocations

— Same as global variables

¢ Variable scope

— Visible only inside the function where they are declared
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Good Programming Practice

Limit the scope of your variables

— Declare variables inside functions

— Use variables local to a .c file to store the internal state of a module

Avoid global variables

— They break encapsulation

Do not include variable declarations in .h files

— Include only function prototypes and constants defined with #define

Avoid static variables inside a function

— They cause undefined behavior when the program execution is not sequential
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Review of Lecture
What did we learn?

Functions with string parameters

Command line arguments

Truth values (result of relational operations)
Character 1/0 with files

Global and local variable scope

Static variables

Complex programs: header files and source files

Next week

Mid-term exam

Next lecture: Control flow

Assignments for next 2 weeks

Review the material for the mid-term exam

e Mid-term review session: Saturday, 2:30 pm, AVW 3400

Read K&R Chapters 2.11, 2.12, 3.4, 3.5, 3.6, 3.7, 3.8

Weekly challenge: check_password_rules.c and Quiz 7 (due on Monday after the exam)
Homework: 1ab@8. pdf (on http://ter.ps/eneel40), due on Friday (after the exam) at 11:59 pm
Project 2: eneel40_s16_p2.pdf (on http://ter.ps/eneel40), due on April 11 at 11:59 pm
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