
3/8/16	

1	

Arrays	and	Strings	

Prof.	Tudor	Dumitraș	
Assistant	Professor,	ECE	
University	of	Maryland,	College	Park	

ENEE	140	

h>p://ter.ps/enee140			

Today’s	Lecture	
• Where	we’ve	been	
–  Scalar	data	types	(int,	long,	float,	double,	char)	
–  Integer	and	floaOng	point	arithmeOc	
–  Basic	control	flow	(while	and	if)	
–  FuncOons	
–  Random	number	generaOon	

• Where	we’re	going	today	
–  Vector	data	types:	arrays,	strings,	enums	
–  Composite	data	types:	struct	
–  Defensive	programming	and	assert()	
–  Coding	style	
–  Project	1	Q&A	

• Where	we’re	going	next	
–  Complex	programs	 2	



3/8/16	

2	

Scalar	vs.	Vector	Data	Types	
• We’ve	seen	

char,	int,	long,	float,	double	
–  These	are	scalar	data	types:	a	variable	holds	a	single	value	

•  Vector	data	types:	hold	a	series	of	scalar	variables	of	the	same	type	
–  Must	specify	the	size	N	of	the	array		
int	 	a[10];	 	 	 	int	array	with	N=10	elements	
long	 	b[10];	 	 	 	long	array	with	N=10	elements	
float	 	c[10];	 	 	 	float	array	with	N=10	elements	
double		d[10];	 	 	 	double	array	with	N=10	elements	
char 	e[10];	 	 	 	string	with	up	to	9	characters	(!)	

–  Accessing	array	elements:	index	between	0	and	N-1	
a[	]	=	0;	 	 	 	 	first	element	
a[	]	=	0;	 	 	 	 	last	element	 3	

0	
9	

Strings	
•  Strings	are	character	arrays,	with	some	special	rules	
–  You	can	iniOalize	strings	using	string	literals	(use	double	quotes)	
char	s[]	=	"Hello	world\n"; 	size	of	s[]	is	implicit	
	

–  The	character	‘\0’	indicates	the	end	of	the	string	
char	s[10];	 	 	must	account	for	‘\0’	=>	can	only	store	9	chars	

–  You	can	read	and	write	strings	using	scanf	and	prine	
• Use	the	%s	format	modifier	

char	s[]	=	"Hello	world\n";	
printf("The	string	is:	%s",	s);	
	 4	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

H	 e	 l	 l	 o	 w	 o	 r	 l	 d	\n	\0	S[]	
index	



3/8/16	

3	

IniMalizaMon	vs.	Assignment	

• Arrays	and	strings	can	be	iniOalized,	but	can	not	assigned	
char	s1[]	=	“ENEE	140”;	 	s1	is	declared	and	iniOalized	

char	s2[10]; 	 	 	s2	is	declared	but	not	iniOalized	

s2	=	“ENEE	140”; 	 	 	error!	(cannot	assign	strings)	
	

•  Instead,	arrays	can	be	copied	
#include	<string.h> 	 	needed	for	strncpy	
	

strncpy(s2,	“ENEE	140”,	10); 	must	specify	the	size	of	s2[]	

	

5	

Reading	Strings	
• scanf:	input	string	stops	at	whitespace	or	at	the	max	field	width	

char	s[10];		
scanf("%9s",	s); 	 	specify	field	width	9	to	allow	for	‘\0’	terminator	

	 	 	 	note:	s	instead	of	&s		

• fgets:	read	whole	line	up	to	specified	size	–	1	
fgets(s,	10,	stdin); 	stdin	is	the	standard	input	stream		

	 	 	 	(more	on	this	later)	
–  The	‘\n’	character	will	be	included	in	s[]	
–  fgets()	returns	NULL	on	EOF	or	error	

•  Read	input	line-by-line,	unOl	EOF	is	encountered	
while	(fgets(s,	10,	stdin)	!=	NULL)	{	…	} 		

•  Use	a	string	as	input	source	
sscanf(s,	"%d",	&i); 	read	integer	i	from	string	s[]	

6	



3/8/16	

4	

WriMng	Strings		

• prine:	use	%s	format	specifier	
char	str[]	=	“world”;	
printf(“Hello	%s\n",	str); 	 		

•  fputs:	print	only	the	string	
fputs(str,	stdout); 	 	stdout	is	the	standard	output	stream	

• Use	a	string	as	output:	
sprintf(str,	“%3d”,	i);	 	write	integer	i	into	str[]	

–  Important:	Must	be	careful	not	to	exceed	the	size	of	str[]!	
	

7	

Common	Programming	Mistakes	
•  Accessing	or	modifying	elements	outside	the	array	bounds	
–  Incorrect		
int 	a[10];		 	 		

a[-1]	=	0;		 	 		

a[10]	=	0;		 	 		

	

char	s[10];	 	 		

scanf("%s",	s); 	 		

–  Correct	
a[i]	=	0;	 	 	 	where	0	<=	i	<	10	

scanf("%9s",	s); 	 	specify	field	width;		

•  This	is	one	of	the	most	common	security	vulnerabiliMes	in	so[ware!!	

index	can	be	0	…	9	

index	out	of	bounds	

index	out	of	bounds	

read	string	of	infinite	length	

can	store	up	to	9	characters	(index	0…8)	



3/8/16	

5	

Defensive	Programming	
•  Good	programming	pracOce:		
–  Think	about	relaOonships	among	the	variables	in	your	program		
–  Determine	condiOons	(e.g.	a	==	b+1)	that	must	be	true	at	various	steps,	if	your	
program	is	correct		

–  Force	the	program	to	stop	when	these	condiOons	are	violated,	then	test	the	
program	with	a	variety	of	inputs	to	make	sure	that	this	doesn’t	happen	

–  This	approach	is	called	“defensive	programming”	

•  Assert:	a	tool	for	defensive	programming	
#include	<assert.h>	
assert(condition);	 	exits	the	program	if	condi;on	is	false	
	
–  Use	assert()	liberally	
–  AsserOons	allow	you	to	diagnose	mistakes	in	your	program	
–  They	also	make	your	assumpOons	clear	to	other	programmers	who	will	read	
your	code	 9	

Defensive	Programming	–	Example	

• Use	defensive	programming	to	prevent	common	mistakes	
related	to	arrays	and	strings	
#include	<assert.h>	

	

int	a[10];	
assert(i>=0	&&	i<10);	 	exits	before	accessing	index	out	of	bounds	

a[i]=0;	 		

• Turn	off	all	asserOons	at	compile	Ome	
gcc	–NDEBUG	myprogram.c		
	

10	



3/8/16	

6	

The	sizeof	Operator	for	Vector	Data	Types	

• Yields	the	number	of	bytes	required	to	store	the	array	or	string	
–  Array	dimension	x	size	of	base	type	

char	a[10];	

int	b[10];	

sizeof(a)	 	 	 	10	

sizeof(b)	 	 	 	40	

	

11	

String	FuncMons	

• Convenient	operaOons	on	strings	
#include	<string.h>	

	 	 	 		

strlen(s); 	 	 	 	length	of	s	
strncpy(dst,	src,	n); 	 	copy	up	to	n	characters	from	src	to	dst	

strncat(dst,	src,	n); 	 	concatenate	dst	and	src	
strncmp(s1,	s2,	n); 	 	compare	s1	and	s2	

	

• Common	programming	mistake	
–  Using	strcpy,	strcat,	strcmp,	etc.	
–  These	funcOons	do	not	allow	you	to	specify	the	size	of	the	desOnaOon	string	
–  Always	use	the	strn*	funcMons	instead	of	the	str*	funcMons!	

12	



3/8/16	

7	

enum	

• EnumeraOon	constant:	list	of	constant	enumeraOon	values	
enum	answer	{NO,	YES};	 	variables	of	type	answer	can	take	2	values:	NO	or	YES	

enum	months	{JAN=1,	FEB,	MAR,	APR,	
	 	MAY,	JUN,	JUL,	AUG,	
	 	SEP,	OCT,	NOV,	DEC};		 	FEB	is	2,	MAR	is	3,	etc.	

	

int	current_month	=	FEB;	

	

13	

Composite	Data	Types	
•  Structures:	encapsulate	mulOple	variables	
–  May	have	different	types	
struct	cartesian_coord	{	

	int	 	x;	
	int	 	y;	

};		
struct	polar_coord	{	

	int	 	radius;	
	float	 	angle;	

};	
	
struct	cartesian_coord	a;	 	 	variables	of	composite	type	
struct	polar_coord	b;	
	
b.radius	=	1;	 	 	 	accessing	members	
b.angle	=	M_PI_2;	 	 	 	π	/	2	
a.x	=	b.radius	*	cos(angle); 	 	0	
a.y	=	b.radius	*	sin(angle);		 	1	 14	



3/8/16	

8	

Coding	Style	

• Programs	are	meant	to	be	read	by	humans	
–  Code	reviews	are	a	common	pracOce	in	the	industry	

• Good	coding	style	makes	programs	more	readable	
–  Examples	of	what	not	to	do:	h>p://www.ioccc.org/		

• There	is	no	“right”	coding	style	
–  Choose	a	style	and	be	consistent	

15	

Coding	Style:	Examples	
•  Explain	what	the	program	does	in	a	comment	at	the	top	
•  Explain	what	each	funcOon	does	in	comments	before	the	funcOon	
definiOon	

•  Use	concise,	meaningful	names	for	variables	and	constants	
–  If	you	have	many	variables,	also	add	short	comments	describing	the	purpose	
of	some	of	the	variables	

•  Follow	normal	English	rules	when	possible	for	be>er	readability	of	
your	code	
–  Write	complete	sentences	in	your	comments	
–  Leave	a	space	awer	each	comma	and	semicolon	(e.g.	in	prine(),	scanf(),	for)		
–  Leave	a	space	on	each	side	of	a	binary	operator	(e.g.	=,	==,	+)	

•  Indent	code	consistently		
–  CLion	and	Eclipse	try	to	do	this	automaOcally	

•  If	you	have	long,	nested	{…}	blocks,	add	a	comment	awer	the	
enclosing	bracket	
–  Indicate	which	block	you	are	closing	(the	while	block,	the	if	block,	etc.)	

16	



3/8/16	

9	

Coding	Style:	Examples	
•  Place	braces	{}	in	a	consistent	manner:	
for	(	i	=	0;	i	<	100;	i++)	{	
				statements;	
} 	OR	
for	(	i	=	0;	i	<	100;	i++)		
{		

				statements;	
	}	

• When	you	prompt	the	user	for	input,	first	print	out	a	message	
describing	what	is	expected	

•  Check	for	errors	and	corner-cases	throughout	the	program	(more	
about	this	later)	

•  Use	simple	statements	as	much	as	possible	
–  Avoid	statements	like	sum	=	a++	+	--b*2	 17	

Review	of	Lecture	
•  What	did	we	learn?	
–  Arrays	
–  Strings	
–  String	I/O	(printf	and	scanf	with	%s)	
–  enum	
–  struct	
–  Coding	style	
–  Defensive	programming	
	

•  Next	lecture	
–  Complex	programs	

•  Assignments	for	this	week	
–  Read	K&R	Chapters	4.3,	4.4,	4.5,	4.6,	4.8,	4.9,	4.11		
–  Weekly	challenge:	trim_strings.c	
–  Homework:	lab07.pdf	(on	h>p://ter.ps/enee140),	due	on	March	11	at	11:59	pm	
–  Quiz	6,	due	on	Monday	(awer	Spring	Break)	at	11:59	pm	
–  Reminder:	Project	1	due	on	Monday,	March	21	(awer	the	Spring	Break)	 18	


