3/1/16

Data Types and Type Conversions
ENEE 140

Prof. Tudor Dumitras

Assistant Professor, ECE 1,
University of Maryland, College Park

http://ter.ps/eneel40

Today’s Lecture

e Where we’ve been
— Scalar data types (int, long, float, double, char)
— Basic control flow (while and if)
— Functions

e Where we're going today
Data types and type conversion
Bitwise operations

Branching

Global variables

Random number generation
Testing

Project 1

e Where we’re going next
— Vector data types (arrays and strings) 2

Limits for Integers

e We've seen:
— UINT_MIN
— UINT_MAX

0

2% —1 (w = 32 on the GRACE machines)

e Binary representation:

— UINT_MIN: (000..0) w bits
— UINT_MAX: (111..1) wbits

Machine Representation of Integers

e Math deals with an infinite set of integers

e On a computer you can only represent a finite set of numbers

— The limits of the int numbers you can use in your C programs are
architecture-dependent

— Example, on the GRACE machines:
unsigned a; 4 bytes (32 bits)
unsigned long a; 8 bytes (64 bits)

¢ How many values can you represent using 32 bits?
— 232
— That’s why UINT_MAX is 232-1
¢ Between 0 and UINT_MAX there are 232 numbers.

3/1/16

The sizeof Operator

¢ Yields the number of bytes required to store a variable of the
type of its operand

— Can provide a variable or a type name
— For example, on the GRACE machines:

int a;
sizeof(a))
sizeof(char)
sizeof(int)
sizeof(unsigned) >— x 8 = number of bits
sizeof(long)
sizeof(unsigned long)
sizeof(float)

sizeof(double)

0 H 0 0 A D L b

Binary Representation of Numbers

¢ We commonly use numbers in base 10

— 10 possible digits: 0..9
— Carry to the next order of magnitude: 9+1=10
3
— Value of 4-digit number d3 d2 d1 dO: D = Ydi-l0
i=0
— Example: 15 = 1*1e! + 5*10°

e Computers use numbers in base 2

— 2 possible digits: 0,1
— Carry to the next order of magnitude: 1,+1,=10,
31
— Value of 32-bit binary number B = b2
B=b31 b30 .. bl bo: i=0

— Example: 0101, = 0*23 + 1%22 + 0*21 + 1%20 = 5, ¢

3/1/16

Binary Representation of Numbers — cont’d

¢ Value of 32-bit binary number B=b31 b30 .. bl bo: p - Sbi-2'

e This is the representation of unsigned variables

— Signed integers and floating point variables use more complex
representations (more on this in ENEE 350)

¢ Signed integers use one bit to store the sign

— Using 32-bit ints you can represent as many values as with 32-bit
unsigneds

— However, only about half of these values are positive

Bitwise Operations

e Operators for manipulating bits:

=& bitwise AND

= bitwise OR

A bitwise XOR (exclusive OR)
<< left shift

= >> right shift

= flip all bits (unary)

e Common usage: bit masks

"=a=2a&1l; set all but lowest order bitto 0
*a=a | 1; set lowest order bit to 1;
=b = (a>>»3) & 1; find value of bit b3 from b31 ... b3 b2 b1 b0

3/1/16

Integer Overflow Revisited

e We've seen:
— UINT_MAX+ 1= 0

e Why?
—Sayw=4
— We can represent 2% = 16 numbers
e Unsigned range: 0 .. 15
— UINT_MAX =2%-1=15,,=1111,
— UINT_MAX +1=1111, +1,=1/0000,

Carry

4 bits

Review: Integer Limits and Overflow

e \We’'ve seen

— sizeof(unsigned) == 32 (on GRACE machines)
— Maximum unsigned value UINT_MAX is 232-1 = 4.3 billion

— Unsigned arithmetic operations are done modulo 232

unsigned a = 1;
a=2%*a;
a=2*%a;

3 a=2%a;

31 a=2* a;
32 a=2%* a;
33 a=2* a;

ais2
ais4
ais 23=8

ais 231
ais 0 (overflow!)

ais0

10

3/1/16

Implicit and Explicit Type Casts

e \We’'ve seen
float b
float b

1/ 2; value of bis O
1.0 / 2; value of b is 0.5

— In the first example, @ (the result of integer division) is converted to
float and assigned to b

— In the second example, 2 is converted to float to perform the operation
using the rules of floating-point arithmetic

— These are implicit type casts

* You can also specify the type conversion using explicit casts

float b = (float)l / 2; value of b is 0.5

11

Rules for Type Conversions in C

¢ [n expressions with floating point and integer variables:
e Integers are cast to floating point

* |n expressions with unsigned and int:
¢ Signed values are cast to unsigned

¢ In expressions with variables of different storage sizes:

— The smaller-size numbers are converted to the larger size
(e.g. intis converted to long int)

— This does not incur overflow or loss of precision

¢ |n assignments

— The value on the right side of an assignment is cast to the type of the left
side

— This happens after the operation is performed

12

e The complete rules are in K&R Chapter 2.7

3/1/16

Random Number Generation

e Many computer applications require random numbers

— Example: coin toss results in heads or tails, each with probability p = %

e Computers produce pseudo-random numbers

— Sequence of numbers that appears random

— The numbers in the sequence follow certain mathematical properties,
e.g. uniform distribution
e Uniform distribution: all values have equal probabilities
e More about probability distributions in ENEE 324

e Random number generators (RNGs) typically require the
programmer to provide a seed before generating the sequence

— Same seed provided =>same sequence generated

— Seed must be a unique number B

Generating Random Numbers in C

¢ The C standard library provides a basic RNG
— Must include stdlib.h

¢ Seed the random number generator (RNG) only once
#include <stdlib.h>
#include <time.h>
srand(time(NULL)); seed RNG with current time

* Generate multiple (pseudo) random numbers
int x = rand(), y = rand(), z = rand();
— rand() returns a pseudo-random integer in the range [0, RAND_MAX]
— RAND_MAX is also defined in stdlib.h

14

3/1/16

How Does a Random Number Generator Work?

e A common method: linear congruential (LC) generator
— Generates sequence Xg, X;, X,, ...
— X, is initialized with the seed

— Xi,, is computed based on X; using the following formula:
Xy = (A*X;+B) mod M

— Three parameters:

o A: the multiplier
* B: the increment
o M: the modulus

15

Some Properties of LC Generators

* X.,, is computed based on X, using the following formula:

Xz = (A*X;+B) mod M

— The largest number that can be generated is M-1

— When M = 232 and operations done on 32-bit integers, modulus operation

can be omitted

— Sequence X; is a cycle of numbers that are repeated periodically (orbit)

— With good choices for A, B and M, the orbit is a complete permutation:

every 32-bit integer is generated exactly once
e Example: A = 214013, B = 2531011, M = 2%?

16

3/1/16

Global Variables
¢ We’ve seen: variables declared inside a function
void fun()
{
int a; variable a declared inside function fun()

— Only visible inside that function

e Global variables: variables declared outside any function
int b; global variable b
int main()

{

— Global variables are visible in any function of the program
(more on variable scope later)

17

Testing

e Complex programs are more likely to have bugs

e |t is important to test these programs thoroughly, with a broad
range of inputs

— Create several sets of input values (test cases)
— Think about corner cases (e.g. limit > RAND_MAX)

e Good programming practice: write test cases before writing the
program

— This helps you clarify what the program should do

e Debugging is not enough for writing correct programs

— You must also create rigorous tests

18

3/1/16

Review of Lecture

e What did we learn?

Binary representation of unsigned integers

Bitwise operations and bit masks

Type conversions

Global variables

Random numbers

The linear-congruential random number generator
Testing

e Next lecture

Arrays and strings

e Assignments for this week

Read K&R Chapters 1.6, 1.9, 2.3, 2.4, 4.1, 4.2, B3

Weekly challenge: strncpy.c

Homework: 1ab@6 . pdf (on http://ter.ps/eneel40), due on Friday at 11:59 pm

Quiz 5, due on Monday at 11:59 pm

Project 1: eneel40_s16_pl.pdf (on http://ter.ps/eneeld0), due on March 21 at 11:59 pm

19

3/1/16

10

