
3/1/16	

1	

Data	Types	and	Type	Conversions	

Prof.	Tudor	Dumitraș	
Assistant	Professor,	ECE	
University	of	Maryland,	College	Park	

ENEE	140	

h=p://ter.ps/enee140			

Today’s	Lecture	
• Where	we’ve	been	
–  Scalar	data	types	(int,	long,	float,	double,	char)	
–  Basic	control	flow	(while	and	if)	
–  FuncPons	

• Where	we’re	going	today	
–  Data	types	and	type	conversion	
–  Bitwise	operaPons	
–  Branching	
–  Global	variables	
–  Random	number	generaPon		
–  Tes$ng	
–  Project	1	

• Where	we’re	going	next	
–  Vector	data	types	(arrays	and	strings)	 2	

3/1/16	

2	

Limits	for	Integers	

• We’ve	seen:	
–  UINT_MIN 	= 		 	 	 	 		

–  UINT_MAX 	= 		 	 		

• Binary	representaPon:	
–  UINT_MIN: 	 		(000…0) 	w	bits	

–  UINT_MAX: 	 		(111…1) 	w	bits	

3	

0	
2w	–	1	(w	=	32	on	the	GRACE	machines)	

Machine	RepresentaFon	of	Integers	
• Math	deals	with	an	infinite	set	of	integers	

• On	a	computer	you	can	only	represent	a	finite	set	of	numbers	
–  The	limits	of	the	int	numbers	you	can	use	in	your	C	programs	are	
architecture-dependent	

–  Example,	on	the	GRACE	machines:	
unsigned	a;	 	 	4	bytes	(32	bits)	
unsigned	long	a; 	 	8	bytes	(64	bits)	
	

• How	many	values	can	you	represent	using	32	bits?	
–  232	
–  That’s	why	UINT_MAX	is	232-1	
• Between	0	and	UINT_MAX	there	are	232	numbers.	

4	

3/1/16	

3	

The	sizeof	Operator	
• Yields	the	number	of	bytes	required	to	store	a	variable	of	the	
type	of	its	operand	
–  Can	provide	a	variable	or	a	type	name	
–  For	example,	on	the	GRACE	machines:		

int	a;	
sizeof(a)	 	 	 	4	

sizeof(char)	 	 		 	1	
sizeof(int)	 	 	 	4	
sizeof(unsigned) 	 	4	
sizeof(long)	 	 	 	8	

sizeof(unsigned	long)	 	8	
sizeof(float)		 	 	4	
sizeof(double)	 	 	8	
	

5	

x	8	=	number	of	bits	

Binary	RepresentaFon	of	Numbers	

• We	commonly	use	numbers	in	base	10	
–  10	possible	digits:	 	 	 	 	0	..	9		

–  Carry	to	the	next	order	of	magnitude:	 		 	9	+	1	=	10	

–  Value	of	4-digit	number	d3	d2	d1	d0:	

–  Example:	 	 	 	 	 	15	=	1*101	+	5*100	

• Computers	use	numbers	in	base	2	
–  2	possible	digits:	 	 	 	 	0,	1	
–  Carry	to	the	next	order	of	magnitude:	 		 	12	+	12	=	102	

–  Value	of	32-bit	binary	number		
B=b31	b30	…	b1	b0:	

–  Example:	01012	=	0*23	+	1*22	+	0*21	+	1*20	=	510	
	

6	

B = bi ⋅2i
i=0

31

∑

D = di ⋅10i
i=0

3

∑

3/1/16	

4	

Binary	RepresentaFon	of	Numbers	–	cont’d	

• Value	of	32-bit	binary	number	B=b31	b30	…	b1	b0:	
	

• This	is	the	representaPon	of	unsigned	variables	
–  Signed	integers	and	floaPng	point	variables	use	more	complex	
representaPons	(more	on	this	in	ENEE	350)	

• Signed	integers	use	one	bit	to	store	the	sign	
–  Using	32-bit	ints	you	can	represent	as	many	values	as	with	32-bit	
unsigneds	

–  However,	only	about	half	of	these	values	are	posiPve	

7	

B = bi ⋅2i
i=0

w−1

∑

Bitwise	OperaFons	

• Operators	for	manipulaPng	bits:		
§  & 	 	bitwise	AND	

§  | 	 	bitwise	OR	

§  ^	 	 	bitwise	XOR	(exclusive	OR)	
§  << 	 	lep	ship	

§  >> 	 	right	ship	
§  ~ 	 	flip	all	bits	(unary)	

• Common	usage:	bit	masks	
§  a	=	a	&	1; 	 	set	all	but	lowest	order	bit	to	0	
§  a	=	a	|	1; 	 	set	lowest	order	bit	to	1;	

§  b	=	(a>>3)	&	1; 	 	find	value	of	bit	b3	from	b31	…	b3	b2	b1	b0	

8	

3/1/16	

5	

Integer	Overflow	Revisited	

• We’ve	seen:	
–  UINT_MAX	+		1	=	

• Why?	
–  Say	w	=	4	
– We	can	represent	2w	=	16	numbers	
• Unsigned	range:	0	..	15	

–  UINT_MAX	=	2w-1	=	1510	=	11112	

–  UINT_MAX	+	1	=	11112	+	12	=	1	0000	2		

9	

0	

Carry	

4	bits	

Review:	Integer	Limits	and	Overflow	

• We’ve	seen	
–  sizeof(unsigned)	==	32	(on	GRACE	machines)	

– Maximum	unsigned	value	UINT_MAX	is	232-1	≈	4.3	billion		

–  Unsigned	arithmePc	operaPons	are	done	modulo	232	
	 	unsigned	a	=	1;	

1	 	a	=	2	*	a;	 	 	 	 	a	is	2	
2 	a	=	2	*	a; 	 	 	 	a	is	4	

3 	a	=	2	*	a; 	 	 	 		

	…	
31 	a	=	2	*	a; 	 	 	 		

32 	a	=	2	*	a; 	 	 	 		
33 	a	=	2	*	a; 	 	 	 		

	
10	

a	is	23=8		

a	is	231		
a	is	0	(overflow!)	
a	is	0		

3/1/16	

6	

Implicit	and	Explicit	Type	Casts	

• We’ve	seen	
	float	b	=	1	/	2; 	 	value	of	b	is	0	

	float	b	=	1.0	/	2; 	 	value	of	b	is	0.5	
–  In	the	first	example,	0	(the	result	of	integer	division)	is	converted	to	
float	and	assigned	to	b	

–  In	the	second	example,	2	is	converted	to	float	to	perform	the	operaPon	
using	the	rules	of	floaPng-point	arithmePc	

–  These	are	implicit	type	casts	

• You	can	also	specify	the	type	conversion	using	explicit	casts	
	float	b	=	(float)1	/	2; 	value	of	b	is	0.5	

	

11	

Rules	for	Type	Conversions	in	C	
•  In	expressions	with	floaPng	point	and	integer	variables:	
•  Integers	are	cast	to	floaFng	point	

•  In	expressions	with	unsigned	and	int:		
•  Signed	values	are	cast	to	unsigned	

•  In	expressions	with	variables	of	different	storage	sizes:	
–  The	smaller-size	numbers	are	converted	to	the	larger	size		
(e.g.	int	is	converted	to	long	int)	

–  This	does	not	incur	overflow	or	loss	of	precision	

•  In	assignments	
–  The	value	on	the	right	side	of	an	assignment	is	cast	to	the	type	of	the	leX	
side	

–  This	happens	aper	the	operaPon	is	performed	

• The	complete	rules	are	in	K&R	Chapter	2.7	
12	

3/1/16	

7	

Random	Number	GeneraFon	

• Many	computer	applicaPons	require	random	numbers	
–  Example:	coin	toss	results	in	heads	or	tails,	each	with	probability	p	=	½		

• Computers	produce	pseudo-random	numbers	
–  Sequence	of	numbers	that	appears	random	
–  The	numbers	in	the	sequence	follow	certain	mathemaPcal	properPes,		
e.g.	uniform	distribuFon	
• Uniform	distribuPon:	all	values	have	equal	probabiliPes	
• More	about	probability	distribuPons	in	ENEE	324	

• Random	number	generators	(RNGs)	typically	require	the	
programmer	to	provide	a	seed	before	generaPng	the	sequence	
–  Same	seed	provided 	=>	same	sequence	generated	
–  Seed	must	be	a	unique	number	 13	

GeneraFng	Random	Numbers	in	C	

• The	C	standard	library	provides	a	basic	RNG	
– Must	include	stdlib.h	

• Seed	the	random	number	generator	(RNG)	only	once		
#include	<stdlib.h> 		
#include	<time.h> 	 		

srand(time(NULL)); 	 	seed	RNG	with	current	Pme	
	

• Generate	mulPple	(pseudo)	random	numbers	
int	x	=	rand(),	y	=	rand(),	z	=	rand();	
–  rand()	returns	a		pseudo-random		integer	in	the	range	[0,	RAND_MAX]	

–  RAND_MAX	is	also	defined	in	stdlib.h	
14	

3/1/16	

8	

How	Does	a	Random	Number	Generator	Work?	

• A	common	method:	linear	congruenFal	(LC)	generator		
–  Generates	sequence	X0,	X1,	X2,	…	
–  X0	is	iniPalized	with	the	seed	
–  Xi+1	is	computed	based	on	Xi	using	the	following	formula:	

	Xi+1	=	(A	*	Xi	+	B)			mod	M	

–  Three	parameters:	
• A:	 	the	mulPplier	
• B:	 	the	increment	
• M: 	the	modulus	

15	

Some	ProperFes	of	LC	Generators	

• Xi+1	is	computed	based	on	Xi	using	the	following	formula:	

	Xi+1	=	(A	*	Xi	+	B)			mod	M	

–  The	largest	number	that	can	be	generated	is	M-1	

– When	M	=	232	and	operaPons	done	on	32-bit	integers,	modulus	operaPon	
can	be	omi=ed	

–  Sequence	Xi	is	a	cycle	of	numbers	that	are	repeated	periodically	(orbit)	
– With	good	choices	for	A,	B	and	M,	the	orbit	is	a	complete	permutaPon:	
every	32-bit	integer	is	generated	exactly	once	
• Example:	A	=	214013,	B	=	2531011,	M	=	232	

16	

3/1/16	

9	

Global	Variables	
• We’ve	seen:	variables	declared	inside	a	funcPon	

	void	fun() 	 	 		
	{	
	 	int	a; 	 	variable	a	declared	inside	funcPon	fun()	
	 	…	

–  Only	visible	inside	that	funcPon	

• Global	variables:	variables	declared	outside	any	funcPon	
	int	b; 	 	 	global	variable	b	
	int	main()		
	{	
	 	…	

–  Global	variables	are	visible	in	any	funcPon	of	the	program	
(more	on	variable	scope	later)	

17	

TesFng	
• Complex	programs	are	more	likely	to	have	bugs	

•  It	is	important	to	test	these	programs	thoroughly,	with	a	broad	
range	of	inputs	
–  Create	several	sets	of	input	values	(test	cases)	
–  Think	about	corner	cases	(e.g.	limit	>	RAND_MAX)	

• Good	programming	pracPce:	write	test	cases	before	wriPng	the	
program	
–  This	helps	you	clarify	what	the	program	should	do	

• Debugging	is	not	enough	for	wriPng	correct	programs	
–  You	must	also	create	rigorous	tests	

18	

3/1/16	

10	

Review	of	Lecture	
•  What	did	we	learn?	

–  Binary	representaPon	of	unsigned	integers	
–  Bitwise	operaPons	and	bit	masks	
–  Type	conversions	
–  Global	variables	
–  Random	numbers	
–  The	linear-congruenPal	random	number	generator	
–  Tes$ng	

•  Next	lecture	
–  Arrays	and	strings	

•  Assignments	for	this	week	
–  Read	K&R	Chapters	1.6,	1.9,	2.3,	2.4,	4.1,	4.2,	B3	
–  Weekly	challenge:	strncpy.c		
–  Homework:	lab06.pdf	(on	h=p://ter.ps/enee140),	due	on	Friday	at	11:59	pm	
–  Quiz	5,	due	on	Monday	at	11:59	pm	
–  Project	1:	enee140_s16_p1.pdf	(on	h=p://ter.ps/enee140),	due	on	March	21	at	11:59	pm	

19	

