Data Types and Type Conversions

ENEE 140

Prof. Tudor Dumitraș
Assistant Professor, ECE
University of Maryland, College Park

http://ter.ps/enee140

Today's Lecture

- Where we've been
- Scalar data types (int, long, float, double, char)
- Basic control flow (while and if)
- Functions
- Where we're going today
- Data types and type conversion
- Bitwise operations
- Branching
- Global variables
- Random number generation
- Testing
- Project 1
- Where we're going next
- Vector data types (arrays and strings)

Limits for Integers

- We've seen:
- UINT_MIN = 0
- UINT_MAX $=2^{w}-1(w=32$ on the GRACE machines $)$
- Binary representation:
- UINT_MIN: (000...0) \quad b bits
- UINT_MAX: (111...1) w bits

Machine Representation of Integers

- Math deals with an infinite set of integers
- On a computer you can only represent a finite set of numbers
- The limits of the int numbers you can use in your C programs are architecture-dependent
- Example, on the GRACE machines:
unsigned a; 4 bytes (32 bits)
unsigned long a; 8 bytes (64 bits)
- How many values can you represent using 32 bits?
-2^{32}
- That's why UINT_MAX is $2^{32}-1$
- Between 0 and UINT_MAX there are 2^{32} numbers.

The sizeof Operator

- Yields the number of bytes required to store a variable of the type of its operand
- Can provide a variable or a type name
- For example, on the GRACE machines:
int a;
sizeof(a)
sizeof(char)
sizeof(int)
sizeof(unsigned)
sizeof(long)
4
1
4
4
8
8
8
sizeof(double)
5

Binary Representation of Numbers

- We commonly use numbers in base 10
- 10 possible digits:

0 .. 9

- Carry to the next order of magnitude:
$9+1=10$
- Value of 4-digit number d3 d2 d1 d0:
$D=\sum_{i=0}^{3} d i \cdot 10^{i}$
- Example:
$15=1 * 10^{1}+5^{*} 10^{0}$
- Computers use numbers in base 2
- 2 possible digits:

0, 1

- Carry to the next order of magnitude:
$1_{2}+1_{2}=10_{2}$
- Value of 32-bit binary number B=b31 b30 ... b1 b0:
$B=\sum_{i=0}^{31} b i \cdot 2^{i}$
- Example: $0101_{2}=0 * 2^{3}+1^{*} 2^{2}+0 * 2^{1}+1^{*} 2^{\theta}=5_{10}$

Binary Representation of Numbers - cont'd

- Value of 32-bit binary number $\mathrm{B}=\mathrm{b} 31$ b30 ... b1 b0: $B=\sum_{i=0}^{w-1} b i \cdot 2^{i}$
- This is the representation of unsigned variables
- Signed integers and floating point variables use more complex representations (more on this in ENEE 350)
- Signed integers use one bit to store the sign
- Using 32-bit ints you can represent as many values as with 32-bit unsigneds
- However, only about half of these values are positive

Bitwise Operations

- Operators for manipulating bits:
- \& bitwise AND
- | bitwise OR
- ^ bitwise XOR (exclusive OR)
- << left shift
- >> right shift
- ~ flip all bits (unary)
- Common usage: bit masks
- a = a \& 1; set all but lowest order bit to 0
- a = a | 1; set lowest order bit to 1;
- b = (a>>3) \& 1; find value of bit b3 from b31 ... b3 b2 b1 b0

Integer Overflow Revisited

- We've seen:
- UINT_MAX + 1 = 0
- Why?
- Say $w=4$
- We can represent $2^{w}=16$ numbers
- Unsigned range: 0 .. 15
- UINT_MAX $=2^{w}-1=15_{10}=1111_{2}$
- UINT_MAX $+1=1111_{2}+1_{2}=10000_{2}$

Carry

Review: Integer Limits and Overflow

- We've seen
- sizeof(unsigned) == 32 (on GRACE machines)
- Maximum unsigned value UINT_MAX is $2^{32}-1 \approx 4.3$ billion
- Unsigned arithmetic operations are done modulo 2^{32}
unsigned a = 1;
$1 a=2 * a ; \quad a$ is 2
$2 a=2 * a ; \quad$ a is 4
$3 a=2$ * $a ;$
a is $2^{3}=8$

31 a = 2 * a;
a is 2^{31}
32 a = 2 * $a ;$
a is 0 (overflow!)
$33 \mathrm{a}=2$ * a ;
a is 0

Implicit and Explicit Type Casts

- We've seen
float $b=1 / 2 ; \quad$ value of b is 0
float $b=1.0 / 2 ; \quad$ value of b is 0.5
- In the first example, 0 (the result of integer division) is converted to float and assigned to b
- In the second example, 2 is converted to float to perform the operation using the rules of floating-point arithmetic
- These are implicit type casts
- You can also specify the type conversion using explicit casts
float $b=(f l o a t) 1 / 2 ; \quad$ value of b is 0.5

Rules for Type Conversions in C

- In expressions with floating point and integer variables:
- Integers are cast to floating point
- In expressions with unsigned and int:
- Signed values are cast to unsigned
- In expressions with variables of different storage sizes:
- The smaller-size numbers are converted to the larger size (e.g. int is converted to long int)
- This does not incur overflow or loss of precision
- In assignments
- The value on the right side of an assignment is cast to the type of the left side
- This happens after the operation is performed
- The complete rules are in K\&R Chapter 2.7

Random Number Generation

- Many computer applications require random numbers
- Example: coin toss results in heads or tails, each with probability $p=1 / 2$
- Computers produce pseudo-random numbers
- Sequence of numbers that appears random
- The numbers in the sequence follow certain mathematical properties, e.g. uniform distribution
- Uniform distribution: all values have equal probabilities
- More about probability distributions in ENEE 324
- Random number generators (RNGs) typically require the programmer to provide a seed before generating the sequence
- Same seed provided => same sequence generated
- Seed must be a unique number

Generating Random Numbers in C

- The C standard library provides a basic RNG
- Must include stdlib.h
- Seed the random number generator (RNG) only once
\#include <stdlib.h>
\#include <time.h>
srand (time(NULL)) seed RNG with current time
- Generate multiple (pseudo) random numbers
int $x=\operatorname{rand}(), y=r a n d(), z=r a n d() ;$
- rand() returns a pseudo-random integer in the range [0, RAND_MAX]
- RAND_MAX is also defined in stdlib.h

How Does a Random Number Generator Work?

- A common method: linear congruential (LC) generator
- Generates sequence $X_{0}, X_{1}, X_{2}, \ldots$
- X_{0} is initialized with the seed
$-\mathrm{X}_{\mathrm{i}+1}$ is computed based on X_{i} using the following formula:

$$
X_{i+1}=\left(A * X_{i}+B\right) \bmod M
$$

- Three parameters:
- A: the multiplier
- B: the increment
- M : the modulus

Some Properties of LC Generators

- X_{i+1} is computed based on X_{i} using the following formula:

$$
X_{i+1}=\left(A * X_{i}+B\right) \bmod M
$$

- The largest number that can be generated is $\mathrm{M}-1$
- When $\mathrm{M}=2^{32}$ and operations done on 32-bit integers, modulus operation can be omitted
- Sequence X_{i} is a cycle of numbers that are repeated periodically (orbit)
- With good choices for A, B and M, the orbit is a complete permutation: every 32-bit integer is generated exactly once
- Example: $\mathrm{A}=214013, \mathrm{~B}=2531011, \mathrm{M}=2^{32}$

Global Variables

- We've seen: variables declared inside a function

```
void fun()
```

\{
int a; variable a declared inside function fun()
...

- Only visible inside that function
- Global variables: variables declared outside any function

```
int b; global variable b
    int main()
    {
```

- Global variables are visible in any function of the program (more on variable scope later)

Testing

- Complex programs are more likely to have bugs
- It is important to test these programs thoroughly, with a broad range of inputs
- Create several sets of input values (test cases)
- Think about corner cases (e.g. limit > RAND_MAX)
- Good programming practice: write test cases before writing the program
- This helps you clarify what the program should do
- Debugging is not enough for writing correct programs
- You must also create rigorous tests

Review of Lecture

- What did we learn?
- Binary representation of unsigned integers
- Bitwise operations and bit masks
- Type conversions
- Global variables
- Random numbers
- The linear-congruential random number generator
- Testing
- Next lecture
- Arrays and strings
- Assignments for this week
- Read K\&R Chapters 1.6, 1.9, 2.3, 2.4, 4.1, 4.2, B3
- Weekly challenge: strncpy.c
- Homework: lab06.pdf (on http://ter.ps/enee140), due on Friday at 11:59 pm
- Quiz 5, due on Monday at 11:59 pm
- Project 1: enee140_s16_p1.pdf (on http://ter.ps/enee140), due on March 21 at 11:59 pm

