Integer and Floating Point Arithmetic ENEE 140

Prof. Tudor Dumitraṣ

Assistant Professor, ECE
University of Maryland, College Park

http://ter.ps/enee140

Today's Lecture

- Where we've been
- Using variables and constants
- Variable assignment and operators
- Iterating (while) and branching (if)
- printf() and scanf()
- Functions
- Basics of data types
- Where we're going today
- Unsigned data type
- The \% operator
- Prefix and postfix increment operators
- Assignment operators (+=)
- Review of integer \& floating point arithmetic
- Overflow and underflow
- Where we're going next
- Data types and type conversion

Prefix and Postfix Increment Operators

- We've seen: increment and decrement operators in C

$a++;$	same as $a=a+1 ;$
$++a ;$	same as $a=a+1 ;$
$a--;$	same as $a=a-1 ;$
$--a ;$	same as $a=a-1 ;$

- We've also seen: value of assignment expressions
$c=b=a=0 ;$
a, b and c become 0
- Both a++ and ++a increment a, but they return different values
b = a++; postfix increment: a becomes $1, b$ becomes 0
b = ++a; prefix increment: a becomes $1, b$ becomes 1
- Same for a-- and --a

Assignment Operators

- We've seen
a++;
increment a by 1
$a=a+10 ; \quad$ increment a by 10
- Prefix and postfix operators
$\mathrm{a}=1$;
$\mathrm{b}=\mathrm{a}++; \quad$ a becomes $2, \mathrm{~b}$ becomes 1
b $=++\mathrm{a} ; \quad$ a becomes $3, \mathrm{~b}$ becomes 3
- Other assignment operators
a += 10;
increment a by 10
Same for -=, *=, /=, \%=

Integer (Euclidean) Division - In Math

- Dividing two integers produces a quotient (q) and a remainder (r)
- The quotient and the remainder always exist and are unique
- Example: dividing a pie with 9 slices among 4 people (source: Wikipedia)

- Mathematical definition:
- Given integers a and b, with $b \neq 0$: there exist unique integers r, q such that:
- $a=b^{*} q+r \quad$ and
- $0 \leq r<b$

Integer (Euclidean) Division - Examples

- What are the remainders and quotients when dividing:
- 8
by 4
$q=2, r=0$
- 4
by 8
- 10
by 10
$q=0, r=4$
$q=1, r=0$
- What is the remainder when dividing:
- $\left(2^{n}-1\right)$ by $2 \quad r=1$
- 2 * by $n \quad r=0$
- $\left(2^{n}-1\right) \quad$ by $2^{n} \quad r=2^{n}-1$
(assume that n is a positive integer)

Computer Arithmetic - Operations

- We've seen

$$
+-/ * \quad \text { arithmetic operators }
$$

- Work for both integer and floating-point variables
- Integer division truncates toward 0 (i.e. the fractional part is discarded)
- The modulus operator \%
- Works only for integers
- Produces the remainder from integer division

$$
\begin{array}{ll}
\text { int } a=5 / 3 ; & \text { value of } a \text { is } 1 \\
\text { int } b=5 \% 3 ; & \text { value of } b \text { is } 2
\end{array}
$$

- The values of a $\% \mathrm{n}$ range between 0 and ($\mathrm{n}-1$)

Order of Evaluation

- Operator precedence (complete rules in K\&R Table 2.1)

1. ! ++ -- (unary operators)
2. * / \%
3. + -
4. \ll= >\gg
5. == !=
6. \&\&
7. ||
8. =

- Rule of thumb:
- Division and multiplication come before addition and subtraction
- Put parentheses around everything else

Unsigned Data Types

- We've seen
int a = -1;
long $\mathrm{b}=-1$;
- Unsigned data types are always positive
unsigned $\mathrm{a}=1$;
unsigned long b = 1;
- Unsigned literals

10
1 as unsigned constant
1 as unsigned long constant

Limits for Computer Integers

- Limits for unsigned integers (unsigned, not unsigned long)
- UINT_MIN = 0
- UINT_MAX $=2^{w}-1$
- Limits for signed integers (int, not long int)
- INT_MIN $=-2^{w-1}$
- INT_MAX $=2^{w-1}-1$
- w is machine dependent
$-w=32$ on the GRACE machines
- UINT_MAX, INT_MIN and INT_MAX are defined as constants in limits.h

Integer Overflow

- What happens when you add 1 to UINT_MAX?
- The mathematical value $\left(2^{w}-1\right)+1=2^{w}$ cannot be stored in an unsigned variable
- The result of the operation is 0
- Intuition: unsigned numbers wrap around
- Think of a 12 h clock
- 11 o'clock +1 h = 0
- We count time modulo 12 h
- This means that the time displayed is the remainder from a division by 12

- Unsigned operations are done modulo 2^{w}

Unsigned Integer Addition

- Mathematical addition
$-s$

$$
=u+v
$$

- unsigned addition: implements modular arithmetic on w bits
$-s \quad=(u+v) \bmod 2^{w}$
- Example: UINT_MAX +1 $=2^{\mathrm{w}} \bmod 2^{\mathrm{w}}=0$ (overflow)
- Multiplication can overflow in similar manner
- Same for addition and multiplication of signed integers

Properties of Signed Integers - Examples

- You can represent more negative than positive numbers
- Positive range: $\quad 1$.. $\left(2^{w-1}-1\right)$
- Negative range: $-1 . .-2^{w-1}$
- Signed integers can overflow as well
- INT_MAX + 1 = INT_MIN
- Adding 2 positive numbers may produce a negative number!
- INT_MIN - 1 = INT_MAX
- Adding 2 negative numbers may produce a positive number!
- INT_MIN = -INT_MIN
- INT_MIN is its own inverse

Conversion Between Signed and Unsigned

- Type conversion int \rightarrow unsigned visualized
- Signed int constant: 0
- Unsigned constant: 0U
unsigned Range

14

Mathematical Properties of Integer Arithmetic

- Closed under addition and multiplication
- Result of signed/unsigned operation is also a signed/unsigned integer
- Commutative
- Associative
- 0 is additive identity; 1 is multiplicative identity
- Multiplication distributes over addition
$-a *(b+c)=a * b+a * c$
- Does not obey the ordering properties of math integers

$$
\begin{array}{lll}
u>0 & \ngtr> & u+v>v \\
u>0, v>0 & \ngtr & u \cdot v>0
\end{array}
$$

Properties of Floating Point Numbers

- As many negative as positive numbers
- Special values (constants for some of these defined in float. h)
- Max floating point number $\quad \Rightarrow$ operations may overflow
- Min floating point $>0 \quad \Rightarrow$ operations may underflow
- Smallest ε such that $1.0+\varepsilon \neq 1.0 \quad \Rightarrow$ operation results may be rounded
- +Inf, -Inf, NaN (not a number)
- Avoid testing the equality of values resulting from floating point operations

```
if (FLT_MAX == (FLT_MAX+1)) {...} condition is true
if (cos(M_PI / 2) != 0.0) {...} condition is true
```


Mathematical Properties of Floating Point Arithmetic

- Closed under addition and multiplication
- But may generate infinity or NaN
- Commutative
- Not associative
$-(a+b)+c \neq a+(b+c)$
$-(a * b) * c \neq a *(b * c)$
- Possibility of overflow, inexactness of rounding
- Multiplication does not distribute over addition
$-a *(b+c) \neq a * b+a * c$
- Possibility of overflow, inexactness of rounding
- Monotonicity
$-a \geq b \quad \Rightarrow a+c \geq b+c$
$-a \geq b \& c \geq 0 \quad \Rightarrow a^{*} c \geq b^{*} c$
- Exceptions: \pm Inf and NaN

Review of Lecture

- What did we learn?
- Unsigned integers
- The \% operator
- Prefix and postfix increment operators
- Assignment operators (+=)
- Sizes of data types
- Limits of integer types and overflow
- Properties of integer and floating point arithmetic
- Next lecture
- Data types and type conversion
- Assignments for this week
- Read K\&R Chapters 2.2, 2.9, 3.3, 6.1, B5, B6
- Note: some of these chapters refer to strings (e.g. char s[]), which we'll cover later
- For now, think of $\mathrm{s}[\mathrm{i}]$ as a character variable
- Weekly challenge: dec2bin.c
- Homework: lab05.pdf (on http://ter.ps/enee140), due on Friday at 11:59 pm 18
- No quiz this week

