
ENEE 140 Lab 8

Lab instructions

This handout includes instructions for the recitation sessions on Wednesday and Friday. Follow
these instructions to review strings and arrays, then submit the homework as indicated below.
To prepare for the next lecture, complete the reading assignment and try to solve the weekly
challenge.

1 Array review

Go over array.c and answer the following questions (you can find array.c in the class public
directory):
Question 1: Why define 10 as a constant variable SIZE instead of just using the value 10?
Question 2: Why initialize sum with 0 rather than 1 or -1?
The following 3 lines of code read in 10 integers one by one.
for (i=0; i<SIZE; i++) {

printf("Enter integer number %d: ", i);
scanf("%d", &a[i]);

}

Question 3: How is the sum of the 10 integers calculated?
Question 4: Add the following line after you print out sum, re-compile the code, run it. Observe
the output and try to guess/reason why this happens.
printf("overflow: a[SIZE] = %4d\n", a[SIZE]);

2 printf with string arguments

The %n.ks format option in a printf() call will reserve n spaces in total but print out only the
first k characters from the string. What will happen if the string has less than k characters? What
would happen if k>n? Write a simple program to verify your answer.

1



Spring 2016
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

Homework

Due: April 1 at 11:59 pm.
Create two programs by following the instructions below. Submit them using the following com-
mands:

submit 2016 spring enee 140 AAAA 8 caesars_code.c
submit 2016 spring enee 140 AAAA 8 primality_testing.c

Note: you must replace AAA with your own section number (0101, 0102, etc.)

1 Caesar’s code

Write a program, called caesars_code.c, to print your name using Caesar’s code. Caesar’s
code works by substituting each letter with the letter that is 3 positions down the alphabet (for
example, ‘A’ becomes ‘D’). When shifting the letters from the end of the alphabet you must wrap
around to the beginning (for example, ‘z’ becomes ‘c’). Do not encrypt the space character. For
example:
Name: Tudor Dumitras
Encrypted name: Wxgru Gxplwudv

Hint. Using a loop, convert each character in the string to the corresponding character in Caesar’s
code. Pay attention to the difference between uppercase and lowercase characters.

2 Primality testing

Write a complete program, called primality_testing.c, which tests whether a given number is
prime. An integer is a prime number if it is greater than 1 and can only be divided evenly by 1 and
by itself. Write a program to test whether a user provided positive integer k is a prime number or
not, and, if it isn’t, provide a counter-example (a number, other than 1 and k that divides k). For
example, when theuser enters 37, the output should be:
37 is prime.

When user enters 24, the output should be
24 is not prime because it is divisible by 2.

Hint. You can use a while loop and an if statement to solve this question. An if statement will
be needed to check whether k can be evenly divided by an integer. You may also find it helpful to
declare a variable to keep track whether a factor of k has been found. Initialize this variable to be
0 and update it to 1 when a factor of k is found. Then you can check the value of this variable to
decide whether k is a prime or not.

2



Spring 2016
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

Reading assignment

K&R Chapters 2.11, 2.12, 3.4, 3.5, 3.6, 3.7, 3.8.

Weekly challenge

Write a program that reads a string and then checks if the string meets the quality rules for UMD
Directory passwords.
You can use the following template (also available in the GRACE class public directory, at
public/challenges/week08):
/*
* check_password_rules.c
*/

#include <stdio.h>
#include <string.h>

#define MAX_PASSWORD_SIZE 256

/*
Given a string, check whether it meets the quality rules for
UMD Directory passwords

Implement:
* A password must be at least 8 and no more than 32 characters

in length.
* A password must contain at least one uppercase letter.
* A password must contain at least one lowercase letter.
* A password must contain at least one character

from the set of digits or punctuation characters
(such as # @ $ & among others).

* A password may not begin or end with the space character.
* A password may not contain more than two consecutive identical

characters.

Do not implement
* A password may not be (or be a variation of) a dictionary word

in English or many other languages. This includes making simple
substitutions of digits or punctuation that resemble alphabetic
characters (such as replacing the letter S in a common word with
the $ symbol).

* You may not reuse a password you have already used.
*/
int
check_password_rules(char s[])
{
}

3



Spring 2016
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

int
main ()
{

char password[MAX_PASSWORD_SIZE];

// Read password and check UMD rules

return 0;
}

The weekly challenge will not be graded. However, if you manage to solve it, you may submit it
for extra credit. The deadline for submitting your solution to the weekly challenge is Monday at
11:59 pm. To be eligible for extra credit, you must implement correctly all but two of the weekly
challenges. You can submit your program from a GRACE machine using the following command
(replace AAAA with your section number):
submit 2016 spring enee 140 AAAA 1008 check_password_rules.c

4


	Array review
	printf with string arguments
	Caesar's code
	Primality testing

