Thermal modeling on rough surfaces

- Airless bodies have strong horizontal temperature gradients due to shadows cast by rugged topography.
- Lunar cold traps exist because of terrain shadowing and are defined by surface temperature.
- Thermal models must incorporate shadows, but also long- and short-wave radiation between surface elements [3].
- Element-to-element radiation dominates runtime.

Contribution

- We develop a fast algorithm for solving the equations governing scattering of long- and short-wave radiation.
- Solve two discretized radiosity equations to compute temp.
- Offline, we precompute a compressed low-rank version of the discretized kernel matrix by compressing low-rank off-diagonal blocks using sparse SVDs.
- Online, multiplication requires nearly $O(N)$ time, where N is the number of triangular elements.
- The matrix only depends on the geometry of the planet so it can be used for simulations spanning a long time.

Physical model [5]

- Energy balance on the surface:
 \[\omega T^4 + (1 - \rho)E + Q = \rho_0 Q \] (3)

 where \(\rho \) = albedo
 \(E \) = incoming solar radiation (insolation) [W m\(^{-2}\)]
 \(Q \) = reflected sunlight [W m\(^{-2}\)]
 \(\rho_0 \) = thermal emission [W m\(^{-2}\)]
 \(T \) = temperature [K]
 \(\sigma \) = emissivity
 \(\sigma_T \) = Stefan-Boltzmann constant [W m\(^{-2}\) K\(^{-4}\)]

- Governing equations for scattering:
 \[Q(\vec{x}) = \frac{1}{2} \int_{S} \int_{S'} \rho_0(\vec{y}) \rho(\vec{y'}) Q(\vec{y'}) (\vec{F}(\vec{y}) \cdot \vec{F}(\vec{y'})) dA dA' \] (2)

 \[Q(\vec{x}) = \frac{1}{2} \int_{S} \int_{S'} \rho_0(\vec{y}) (1 - \rho(\vec{y'})) dA \] (3)

 where \(S \) = surface of the planet or crater
 \(dA \) = surface area element [m\(^2\)]
 \(F(\vec{x}) \) = \(\int_{S} \rho(\vec{y}) (\vec{F}(\vec{y}) \cdot \vec{n}(\vec{y})) dA \)
 \(S_n \) = surface normal on \(S \)
 \(|x_n| \) = magnitude of \(\vec{n}(\vec{y}) \)
 \(\vec{F}(\vec{x}) = \frac{1}{2} [f(\vec{x}) \vec{n}(\vec{x}) + x \vec{n}(\vec{x})] \)
 \(\vec{x} \) = visible field of view if \(\vec{r} \)

- We use this test problem to validate our numerical method.

The radiosity method

- Equations (2) and (3) are radiosity integral equations:
 \[B(\vec{x}) = E(\vec{x}) + \rho(\vec{x}) (\vec{Q}(\vec{x}) + \rho(\vec{x}) \int_{V} \vec{Q}(\vec{y}) dV) \] (4)

 where \(B \) = radiosity [W m\(^{-2}\)]
 \(E \) = self-emitted radiosity [W m\(^{-2}\)]
 \(\rho \) = albedo
 \(F \) = geometric kernel

- Midpoint discretization concentration of (4) gives the system:
 \[KB = (I - F) E + B = E \] (5)

 \[F \] = \[\begin{bmatrix} \begin{bmatrix} \rho(\vec{p}) & \ldots & \rho(\vec{p}_2) \end{bmatrix} & \begin{bmatrix} \rho(\vec{p}_2) & \rho(\vec{p}_3) \ldots \rho(\vec{p}_n) \end{bmatrix} & \ldots & \begin{bmatrix} \rho(\vec{p}_N-1) & \rho(\vec{p}_N) \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \] (6)

 where \(F \) is the low-rank factor and:
 \(p_i \) = centroid of \(i \)-th triangle
 \(n_i \) = surface normal at \(p_i \)
 \(A_i \) = area of \(i \)-th triangle
 \(V_i \) = visibility between \(p_i \) and \(p_j \)

- Solving the discrete radiosity system:
 - The system (5) can be solved in a small number of Neumann or Jacobi iterations (typically 2 to 5).
 - Newly perfectly conditioned since it’s a discretized BIE.
 - Main challenge: fast multiplication by \(F \).

Low rank compression of form factor matrix \(F \)

- Spatial partitioning: use quadtrees or octrees to recursively partition triangular elements.
- Low-rank interactions: blocks of \(F \) that correspond to interactions between nonoverlapping cells in quadtrees or octrees are typically sparse with a dense low-rank subblock.
- SVV compression: compute SVD to find dense subblock and compress it within a given tolerance \(\epsilon \).
- Best low-rank approximation by SVD:
 \[\min_{F, F_k} \| F - F_k \|_F \] (8)

 where \(F \) is a fixed rank, \(F_k \) = \(U_k \Sigma_k V_k \) is computed from the rank-\(k \) truncated SVD of \(F \), and \(\epsilon \) is the \(\ell_2 \)-singular value of \(F \).

- This approach is similar to the \(H \)-matrix format [1].

Examples of compressed form matrices \(F \)

- \(F \) = SVDblock, \(\epsilon \) = sparse block, \(\epsilon \) = dense block, \(\epsilon \) = zero block

\(F \) is used for simulations spanning a long time

- Equations (2) and (3) are used for simulations spanning a long time

Ingersoll test problem: numerical results

- Only part of the crater is illuminated (top-left).
- The steady state temperature in the shadow is constant (top-right).
- Pointwise error after one bounce is below \(\epsilon \) = 10\(^{-4}\) tolerance (bottom-left).
- Error between \(T \) and exact Ingersoll temperature is uniform (bottom-right).
- Errors are sensitive to the triangulation (bottom-right).

Ingersoll test problem: performance results

- We build the compressed \(F \) matrix with a tolerance of \(\epsilon = 10^{-4} \) and a maximum SVD rank of \(k = 60 \).
- We compare the exact steady state temperature in the shadow region given by (9) with the numerical steady state temperature vs. problem size (bottom-right).

References

Illumination and Temperature on Rough Terrain: Fast Methods for Solving the Radiosity Equation

Samuel F. Potter (a@bicus@umd.edu)\(^1\), Norbert Schörghofer\(^2\), and Erwan Mazarico\(^3\)

\(^1\) University of Maryland Department of Computer Science, \(^2\) Planetary Science Institute, \(^3\) NASA Goddard Space Flight Center