Plane-wave decomposition analysis for spherical microphone arrays

Ramani Duraiswami, Zhiyun Li, Dmitry Zotkin, Elena Grassi, Nail A. Gumerov

Department of Computer Science and UMIACS, Perceptual Interfaces and Reality Laboratory, University of Maryland, College Park, Maryland
{ramani,zli,dz,egrassi,gumerov}@umiacs.umd.edu
http://www.umiacs.umd.edu/~ramani

Partial support of NSF award IIS 0205271 is gratefully acknowledged.
Spherical Arrays

• Can provide spatial information on sound at a point
• Sound scattering by the sphere can be “undone”
• Incoming sound deduced from sound at surface
• Can be used in applications such as sound field analysis, beamforming, tracking, meeting capture and virtual reality
• Sound satisfies wave equation subject to boundary conditions

\[
\frac{1}{c^2} \frac{\partial^2 p'(r,t)}{\partial t^2} = \nabla^2 p'(r,t),
\]

\[
\nabla^2 \psi (r) + k^2 \psi (r) = 0, \quad k = \frac{\omega}{c},
\]
Sound field at a point

• Decompose sound as $\psi = \psi_{\text{in}} + \psi_{\text{scat}}$

• Incident sound field ψ_{in} at sphere centre is regular

$$\psi_{\text{in}}(k; r) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} A_n^m R_n^m(k; r), \quad R_n^m(k; r) = j_n(kr)Y_n^m(\theta, \varphi)$$

$$Y_n^m(\theta, \varphi) = (-1)^m \sqrt{\frac{2n + 1}{4\pi} \frac{(n - |m|)!}{(n + |m|)!}} P_n^{|m|}(\cos \theta)e^{im\varphi},$$

$$P_n(s_l \cdot s_j) = \frac{4\pi}{2n + 1} \sum_{m=-n}^{n} Y_{n}^{-m}(s_l) Y_{n}^{m}(s_j).$$

• Expressions are usually truncated at p terms (causing an error)
• Truncated coefficients determined from measurements
• Expansions converge and an error bound can be established
• However, expansions in spherical functions are not very informative
• Another basis can be used to explicitly express direction dependence.
Regular spherical wave functions
Plane-wave basis

• The incoming sound at a point can be expressed as a sum of plane-waves coming from all directions
 • (actually integral over all directions (unit sphere)
 \[
 \psi_{in} (r) = \frac{1}{4\pi} \int_{S_u} e^{iks \cdot r} \mu_{in} (s) dS (s),
 \]

• These functions constitute a basis as well.

• Strengths of plane-waves, \(\mu_{in} \), are known as "Herglotz wave functions" or "Signature functions"

• The two sets of basis functions can be related

\[
e^{iks \cdot r} = 4\pi \sum_{n=0}^{\infty} \sum_{m=-n}^{n} i^n Y_n^{-m} (s) R_n^m (r),
\]

\[
R_n^m (r) = \frac{i^{-n}}{4\pi} \int_{S_u} e^{iks \cdot r} Y_n^m (s) dS (s),
\]
• The approximation made when an incident plane-wave is expressed in terms of spherical wave functions is

\[
\epsilon_p (s, r) = e^{iks \cdot r} - 4\pi \sum_{n=0}^{p-1} \sum_{m=-n}^{n} i^n Y_{n}^{-m} (s) R_n^m (r)
\]

\[
= \sum_{n=p}^{\infty} (2n + 1) i^n j_n (kr) P_n \left(\frac{r \cdot s}{r} \right)
\]

• Quantity can be bounded as
\[
|\epsilon_p (s, r)| \lesssim \exp \left\{ -\frac{1}{3} \left[2 \frac{p - kR}{(kR)^{1/3}} \right]^{3/2} \right\} = \delta_p, \quad kR \gg 1.
\]

So the difference between the "band-limited" plane-wave and full wave is

\[
|\psi_{in} (r) - \psi^{(p)}_{in} (r)| \leq \frac{1}{4\pi} \int_{S_u} |\epsilon_p (s, r)| |\mu_{in} (s)| dS (s)
\]

\[
\leq \max |\epsilon_p (s, r)| \max |\mu_{in} (s)| \lesssim \delta_p \max |\mu_{in} (s)| = \epsilon_s,
\]

For a given allowable error, this can be solved for \(p \)

\[
p \approx kR + \frac{1}{2} \left(3 \ln \frac{\max |\mu_{in} (s)|}{\epsilon_s} \right)^{2/3} (kR)^{1/3}, \quad kR \gg 1.
\]

In multifrequency analysis, increase \(p \) along with the frequency
NAIL A. GUMEROV and RAMANI DURAIWAMI

FAST MULTIPole METHODS FOR THE HELMHOLTZ EQUATION IN THREE DIMENSIONS

A Volume in the Elsevier Series in Electromagnetism
• Provides relation between the plane-wave and order of spherical wave expansion needed to represent it
• Depends on frequency, size of domain and weakly on wave magnitude
• p truncated plane waves used as beam patterns.
Approximate Integration (Quadrature)

- Integral over sphere must be performed discretely for truncated plane-waves
- Done via a “quadrature rule” that provides weights and points (microphone locations) that integrate spherical harmonics up to a particular order

\[\int_{S_u} F(s) \, dS = \sum_{j=0}^{L_Q-1} F(s_j) \, w_j, \quad F(s) = \sum_{n=0}^{p-1} \sum_{m=-n}^{n} C_n^m Y_n^m(s), \]

- Gaussian quadrature of order \(p \) needs \(2p^2 \) inconveniently distributed points
- For an arbitrary distribution we need \(4p^2 \) points, while for some special designs we can achieve exact integration for band-limited functions
• Since both the plane-waves and the surface function μ_{in}, can be expanded in spherical harmonics of order p, we need formula of order $2p$.
• So we need $4p^2$ or $16p^2$ points leading to a large number of microphones.
• Number L for $4p^2$ shown below for different freqs. for 3cm and 9cm rad. array

<table>
<thead>
<tr>
<th>a</th>
<th>f</th>
<th>ka</th>
<th>p</th>
<th>L</th>
<th>f</th>
<th>ka</th>
<th>p</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>3cm</td>
<td>4kHZ</td>
<td>2.1</td>
<td>3</td>
<td>36</td>
<td>12kHZ</td>
<td>6.3</td>
<td>7</td>
<td>196</td>
</tr>
<tr>
<td>9cm</td>
<td>4kHZ</td>
<td>6.3</td>
<td>7</td>
<td>196</td>
<td>12kHZ</td>
<td>18.9</td>
<td>20</td>
<td>1600</td>
</tr>
</tbody>
</table>

• As exact formulae lead to large numbers of points we seek approximate ones
• Spherical designs proposed by Hardin and Sloane achieve numerically exact formulae, that however are not robust to out of band errors
• We have adopted the Fliege-Maier points/weights
• Obtained via an optimization procedure that minimize error for out-of-band functions
Solving for the Plane Wave coefficients

- Use scattering of a plane wave off a sphere
- Decompose sound-field in terms of a set of p truncated plane-waves.

$$\psi_S (s; s') = K (s; s') = \frac{i}{(ka)^2} \sum_{n=0}^{p-1} \frac{i^n (2n + 1) P_n (s \cdot s')}{h'_n (ka)}.$$

Substituting in the plane-wave representation

$$\psi_S (s) = \frac{1}{4\pi} \int_{S_u} K (s; s') \mu_{in} (s') dS' = \sum_{l=0}^{L_Q-1} w_l K (s; s'_l) \mu_{in} (s'_l).$$

$$\psi_S (s_j) = \sum_{l=0}^{L_Q-1} K (s_j; s_l) w_l \mu_{in} (s_l), \quad j = 1, \cdots, L_M,$$

L_M is the total number of microphones. Can be solved for μ_{in} as
Results

Here we show the reproduction of plane-waves from a particular direction in terms of other plane waves coming from a set of chosen directions.

Error is small as expected in region of spherical array.

In Duraiswami et al. (AES, 2005) we used this idea to develop HRTF-based binaural playback of sound recorded by a spherical array.

\[
\mu_{in}(s_i) = \sum_{j=0}^{L_M-1} w_j M(s_i; s_j) \psi_S(s_j),
\]

\[
M(s_i; s_j) = \frac{-i}{4\pi} \frac{(ka)^2}{p-1} \sum_{n=0}^{p-1} (2n + 1) i^{-n} h_n'(ka) P_n(s_i \cdot s_j).
\]