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ABSTRACT

Spherical microphone arrays provide an ability to compute the
acoustical intensity corresponding to different spatial directions in
a given frame of audio-data. These intensities may be exhibited as
an image and these images updated at a high frame rate to achieve
a video stream if the data capture and intensity computations can
be performed sufficiently quickly, there by creating a frame-rate
audio camera. We describe how such a camera can be built and
the processing done sufficiently quickly using graphics proces-
sors. The joint processing of captured frame-rate audio andvideo
images enables applications such as visual identification of noise
sources, beamforming and noise-suppression in video conference-
ing and others, provided it is possible to account for the spatial dif-
ferences in the location of the audio and the video cameras. Based
on the recognition that the spherical array can be viewed as acen-
tral projection camera it is possible to perform such joint analysis.
We provide several examples of real-time applications.

1. INTRODUCTION

Over the past few years there have been several publicationsthat
deal with the use of spherical microphone arrays (see e.g. [9, 1,
16, 4, 15]). Such arrays are seen by some researchers as a means
to capture a representation of the sound field in the vicinityof the
array [2], and by others as a means to digitally beamform sound
from different directions using the array with a relativelyhigh or-
der beampattern [10, 6], or for nearby sources [7]. Variations to the
usual solid spherical arrays have been suggested, including hemi-
spherical arrays [5], open arrays [1], concentric arrays and others.
We refer the interested reader to these papers for discussions.

A particularly exciting use of these arrays is to steer it to var-
ious directions and create an intensity map of the acoustic power
in various frequency bands via beamforming. The resulting im-
age, since it is linked with direction can be used to identifysource
location (direction), be related with physical objects in the world
and identify sources of sound and be used in several applications
that we discuss at the end of the paper. This brings up the exciting
possibility of creating a “sound camera.”

To be useful, two difficulties must be overcome. The first,
is that the beamforming requires the weighted sum of the Fourier
coefficients of all the microphone signals, and multichannel sound
capture, and it has been difficult to achieve frame-rate performance,
as would be desirable in applications such as videoconferencing,
noise detection, etc. Second, while qualitative identification of
sound sources with real-world objects (speaking humans, noisy
machines, gunshots) can be done via a human observer who has
knowledge of the environment geometry, for precision and au-
tomation the sound images must be captured in conjunction with
video, and the two must be automatically analyzed to determine

Figure 1: A sound image created by beamforming along a set
of 8192 directions (a 128×64grid in azimuth and elevation), and
quantizing the steered response power according to a color map.

correspondence and identification of the sound sources. Forthis a
formulation for the geometrically correct warping of the two im-
ages, taken from an array and cameras at different locationsis nec-
essary.

By recognizing that the spherical array derived sound images
satisfy central projection, a property crucial to geometric analysis
of multi-camera systems [3], we showed [11] how it was possible
to calibrate camera-spherical array systems, and perform vision-
guided beamforming. Here, we extend that system to achieve
frame-rate sound image creation, beamforming, and the process-
ing of the sound image stream along with a simultaneously ac-
quired video-camera image stream, to achieve “image-transfer,”
i.e., the ability to warp one image onto the other to determine
correspondence. The key innovation that enables speed is touse
modern graphics processors (GPUs) to do the processing at frame-
rate. In Sec. 2 we provide some background and notation for both
spherical arrays and GPUs. In Sec. 3 we briefly describe our ex-
perimental setup. In Sec. 4 we provide details that allow us to
achieve high frame-rates. Sec. 5 provides experimental results.

2. BACKGROUND

Beamforming with Spherical Microphone Arrays: Let sound
be captured atN microphones at locationsΘs = (θs, ϕs) on the
surface of a solid spherical array. Two approaches to the beam-
forming weights are possible. The modal approach relies on or-
thogonality of the spherical harmonics and quadrature on the sphere,
and decomposes the frequency dependence. It however requires
knowledge of quadrature weights, and theoretically for a quadra-
ture orderP (whose square is related to the number of micro-
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phonesS) can only achieve beampatterns of orderP/2 [9, 16].
The other requires the solution of interpolation problems of sizeS
(potentially at each frequency), and building of a table of weights
[6]. In each case, to beamform the signal in directionΘ =(θ, ϕ)
at frequencyf (corresponding to wavenumberk = 2πf/c, where
c is the sound speed), we sum up the Fourier transform of the pres-
sure at the different microphones,dks as

ψ (Θ; k) =

S∑

s=1

wN (Θ,Θs, ka)d
k

s (Θs) . (1)

In the modal case [9] the weightswN are related to the quadra-
ture weightsCmn for the locations{Θs} , and thebn coefficients
obtained from the scattering solution of a plane wave off a solid
sphere

wN (Θ,Θs, ka) =
N∑

n=0

1

2inbn(ka)

n∑

m=−n

Y m∗

n (Θ)Y m

n (Θs)C
m

n (Θs).

(2)
For the placement of microphones at special quadrature points, a
set of unity quadrature weightsCmn are achieved. In practice, it
was observed [6] that for{Θs} at the the so-called Fliege points,
higher order beampatterns were achieved with some noise (ap-
proaching that achievable by interpolation(N + 1) =

√
S). In

our beamformer, we use one order lower than this limit, and the
Fliege microphone locations, though we also consider the case
where weights are generated separately and stored in a table.

Figure 2: Epipolar geometry between a video camera (left), and
a spherical array sound camera. The world pointP and its im-
age pointp on the left are connected via a line passing through
PO.Thus, in the right image the corresponding image pointp′ lies
on a curve which is the image of this line (and vice versa, for image
points in the right camera).

Joint Audio-Video processing and Calibration: In [11] we
provide a detailed outline of how to use cameras and spherical ar-
rays together and determine the geometric location of a source.
The key observation was that the intensity image at different fre-
quencies created via beamforming using a spherical array could
be treated as a central projection (CP) camera, since the intensity
at each “pixel” is associated with a ray (or its spherical harmonic
reconstruction to a certain order). When two CP cameras observe
a scene, they share an “epipolar geometry” (Fig. 2, also see [3]).
Given two cameras and several correspondences (via a calibration

object such as in Fig. 3), a fundamental matrix that encodes the
calibration parameters of the camera and the parameters of the
relative transformation (rotation and translation) between the two
camera frames can be computed. Given a fundamental matrix of
a stereo rig it is possible to take points in one cameras coordinate
system and relate them to directly to pixels in the second cameras
coordinate system. Given more video cameras, a complete solu-
tion of the 3D scene structure common to the two cameras can be
made, and “image transfer” that allows the transfer of the audio in-
tensity information to actual scene objects made precisely. Given a
single camera and a microphone array, the transfer can be accom-
plished if we assume that the world is planar (or that it is on the
surface of a sphere) at a certain range.

Figure 3: A calibration wand consisting of a Knowles micros-
peaker and an LED collocated at the end of a pencil was used to
obtain the fundamental matrix.

General Purpose GPU Processing: Recently GPUs have be-
come an incredibly powerful computing workhorse for processing
computationally intensive highly parallel tasks. Recently NVidia
released the Compute Unified Device Architecture (CUDA) along
with the G8800 GPU with a theoretical peak speed of 330 Gflops,
which is over two orders of magnitude larger than that of a state
of the art Intel processor. This release provides a C-like API for
coding the individual processors on the GPU that makes general
purpose GPU programming much more accessible. CUDA pro-
gramming, however still requires much trial and error, and under-
standing of the nonuniform memory architecture to map a problem
onto it. In this paper we map the beamforming, image creation, im-
age transfer, and beamformed signal computation problems to the
GPU to achieve a frame-rate audio-video camera.

Figure 4: Peak GFlops for NVIDIA GPUs vs Intel CPUs. GPU
capabilities have been advancing much faster.

3. EXPERIMENTAL SETUP

Audio information was acquired using a previously developed [6]
solid spherical microphone array of radius 10cm whose surface
was embedded with 60 microphones. The signals from the mi-
crophones are amplified and filtered using two custom 32 channel
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preamplifiers and fed to two National Instruments PCIe-6259multi
function data acquisition cards. Each audio stream is sampled at
a rate of 31250 samples per second. The acquired audio is then
shipped to an NVidia G8800 GTX GPU installed in a computer
running Windows XP with an Intel Core2 processor and a clock
speed of 2.4GHz with 2GB of Ram. The NVidia G8800 GTX GPU
utilizes a 16 SIMD multiprocessors with On-Chip Shared memory.
Each of these Multiprocessors is composed of 8 separate proces-
sors that operate at 1.35GHz for a total of 128 parallel processors.
The G8800 is also equipped with 768 MB of onboard memory. In
addition to audio acquisition we also acquire video frames from
an orange micro IBot USB2.0 web camera at a resolution of 640 x
480 pixels and a frame rate of 10 frames per second. The images
are acquired using OpenCV and are also immediately shipped to
the onboard memory of the GPU.

Figure 5: A 2- camera, 2-spherical array system consisting of a
webcam and spherical array on the left, a hemispherical array on
the centre table, and a video camera on the right. This paper reports
results with the single array and camera on the left.

4. REAL-TIME PROCESSING

Since both pre-computed weights [5] and analytically prescribed
weights [9] capable of being generated “on-the-fly” are used, we
present the generation of images for both cases.

Pre-computed weights: This algorithm proceeds in a two stage
fashion: a precomputation phase (run on the CPU) and a run-time
GPU component. In stage 1 pixel locations are defined prior to
run-time and the weights are computed using any optimization
method as described in the literature. These weights are stored
on disk and loaded only at Runtime. In general the number of
weights that must be computed for a given audio image is equalto
PMF whereP is the number of audio pixels,M is the number of
microphones, andF is the number of frequencies to analyze. Each
of these weights is a complex number of size 8 bytes.

After pre-computation and storage of the beamformer weights
in the run-time component the weights are read from disk and
shipped to the onboard memory of the GPU. A circular buffer
of size 2048 x 64 is allocated in the CPU memory to temporar-
ily store the incoming audio in a double buffering configuration.
Every time 1024 samples are written to this buffer they are imme-
diately shipped to a pre-allocated buffer on the GPU. While the
GPU processes this frame the second half of the buffer is popu-
lated. This means that in order to process all of the data in real-
time all of the processing must be completed in less then 33ms, to
not miss any data.

Once audio data is on the GPU we begin by performing an
in place FFT using the cuFFT library in the NVidia CUDA SDK.
A matrix vector product is then performed with each frequency’s

weight matrix and the corresponding row in the FFT data, using
the NVidia CuBlas linear algebra library. The output image is
segmented into 16 sub-images for each multi-processor to handle.
Each multiprocessor is responsible for compiling the beamformed
response power in three frequency bands into theRGB channels
of the final pixel buffer object. Once this is completed control is
restored to the CPU and the final image is displayed to the screen
as a texture mapped quad in OpenGL.

On the fly weight computation: In this implementation there
is a much smaller memory footprint. Whereas we needed space
to be allocated for weights on the GPU in the previous algorithm,
this one only needs to store the location of the microphones.At
start up these locations are read from disk and shipped to theGPU
memory. Efficient processing is achieved by making use of the
addition theorem which states that

Pn (cos γ) =
4π

2n+ 1

n∑

m=−n

Y −m

n (Θ)Y m

n (Θs) (3)

whereΘ is the spherical coordinate of the audio pixel andΘs is
the location of thesth microphone,γ is the angle between these
two locations andPn is the Legendre polynomial of ordern. This
observation reduces the ordern2 sum in Eq. (2) to an ordern sum.
ThePn are defined by a simple recursive formula that is quickly
computed on the GPU for each audio pixel.

The computation of the audio proceeds as follows. First we
load the audio signal onto the GPU and perform an inplace FFT.
We then segment the audio image into 16 tiles and assign each
tile to a multiprocessor of the GPU. Each thread in the execution
is responsible for computing the response power of a single pixel
in the audio image. The only data that the kernel needs to access
is the location of the microphone in order to computeγ and the
Fourier coefficients of the 60 microphone signals for all frequen-
cies to be displayed. The weights can then be computed using sim-
ple recursive formula for each of the Hankel, Bessel, and Legendre
polynomials in Eq. (2).

While performance of the beamformer may be a bit worse,
there are several benefits to the on-the-fly approach: 1) frequencies
of interest can be changed at runtime with no additional overhead;
2) pixel locations can be changed at runtime with little additional
overhead; 3) memory requirements are drastically lower then stor-
ing pre-computed weights.

Beamforming: Once a source location of interest is identi-
fied, we can isolated audio signal associated with that direction.
The intensity of the audio pixel for a given direction is propor-
tional to the Fourier component of the corresponding frequency
in the acoustic signal. By computing the intensity of the audio
pixels for a given location for all frequencies in the microphone
array effective frequency band we can recover and isolate signal.
For frequencies outside the effective range of the array we simply
append the Fourier coefficients of the raw audio signal from the
closest microphone.

5. RESULTS

Vision guided beamforming: Several authors have in the past
proposed vision guided beamforming (see e.g., [12]). The idea
is that vision based constraints can help us to not steer the beam-
former in directions that are not promising. Often these constraints
require the source to lie in some constrained region. One crucial
difference here is that the quality of the geometric constraints pro-
vided by the epipolar geometry is much stronger. We illustrate in
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Fig. 6 this example with a case where a speaker’s voice is beam-
formed in the presence of severe noise using location information
from vision. Using a calibrated array-camera combination,we ap-
plied a standard face detection algorithm to the vision image and
then used the epipolar line induced by the mouth region of thevi-
sion image to search for the source in the audio image.

 

Figure 6: A loudspeaker source was played that overwhelmed the
sound of the speaking person, whose face was detected with a face
detector [8] and the epipolar line corresponding to the mouth loca-
tion in the vision image was drawn in the audio image. A search
for a local audio intensity peak along this line in the audio image
allowed precise steering of the beam, and made the speaker audi-
ble. www.umiacs.umd.edu/~ramani/pubs/face_beamform.wmv

Image transfer: Noise source identification via acoustic holog-
raphy seeks to determine the noise location from remote measure-
ments of the acoustic field. Here we add the capacity to visually
identify the source via automatic warping of the sound image. This
implementation also has application to areas such as gunshot de-
tection, meeting recording (identifying who’s talking), etc. We
used the method of precomputed weights. An audio image was
generated at a rate of 30 frames/s and video was acquired at a rate
of 10 frames/s. In order to reduce the effects of incoherent rever-
beration and spurious peaks we incorporated a temporal filter of
the audio image prior to transfer. Once the audio image is gener-
ated a second GPU kernel is assigned to generate the image trans-
fer overlay which is then alpha blended with the video frame.The
audio video stereo rig was calibrated according to [11]. Theaudio
image transfer is also performed in parallel on the GPU and the
corresponding values are then mapped to a texture and displayed
over the video frame. To decrease pixilation artifacts the kernel
also performs bilinear interpolation. Though the video frames are
only acquired at 10 frames per second the over-laid audio image
achieves the same frame rate as the audio camera (30fps). Figure 7
shows an image of the transfer of the sound image onto the video
image of a speaking user.
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