
CMSC858M/ AMSC698R Assignment 3/4

1 Problem (Homework 3/4)

Compute the matrix-vector product
v = Φu, (1)

or the sum

vj =

N∑
i=1

Φjiui, j = 1, ...,M, (2)

with absolute error ε < 10−6, where

Φ =


Φ11 Φ12 ... Φ1N

Φ21 Φ22 ... Φ2N

... ... ... ...
ΦM1 ΦM2 ... ΦMN

 , u =


u1
u2
u3
...
uN

 , v =


v1
v2
v3
...
vM

 , (3)

Φji =
1

yj − xi
, i = 1, ..., N, j = 1, ...,M.

and x1, ..., xN are random points uniformly distributed on [0,1], M = N − 1, and each yj is located between
the closest xi’s on each side, j = 1, ..., N − 1 using optimized version of Pre-FMM that uses R-expansions
near the centers of the target boxes.

Homework 3 (Developing supporting programs and theoretical estimations)

1. Create a O(N logN) method to create the data structure for use with the Pre-FMM, which employs
space partitioning with K boxes (segments). It is suggested to use a bookmarking method (see Ap-
pendix). Other methods of bookkeeping are OK if they have complexity O(N logN)). Test your
program to be sure that bookkeeping works properly.

2. Read the tasks for Homework 4. Draw a sketch of the Pre-FMM algorithm, assuming that you need
to perform tasks of Homework 4. Identify supporting programs that you will need to use.

3. Write supporting programs, which allow you to determine necessary indeces for the sources and targets
for arbitrary N and K and box centers.

4. Evaluate the truncation number, p(K,N), that should provide the specified accuracy as a function
of the number of boxes K and the size of the problem, N. N will vary in the tests between 102 and
104 and you can use some simplifications and find some p which should be sufficient to provide the
necessary accuracy for this range.

5. Evaluate theoretically the optimal number of boxes Kopt(N) based on the obtained evaluations of p
for specified accuracy.

6. Write a program which provides you the local R-expansion coefficients for a given target box (or target
box center) and a source. Verify its accuracy by evaluating the function directly and via the expansion.

Homework 4 (Developing the main routine, optimization, and tests)

1. Using Lecture #6 write a program that implements both straightforward multiplication based on Eq.
(2) and Pre-FMM that uses local R-expansions.

2. Provide a graph of the absolute maximum error between the straightforward method and the Pre-FMM
for N = 103, K varying between 10 and 100, and p from your theoretical evaluations. Compare the
results with your evaluations of the accuracy. You may find that practically the theoretical p can be
substantially reduced to stay within the specified error bounds. In this case you may (or may not)
reduce p and use experimental values to proceed further.

c©N.A. Gumerov & R. Duraiswami, 2002-2011. All rights reserved. Do not distribute.1



CMSC858M/ AMSC698R Assignment 3/4

3. Provide a dependence of the CPU time required by the Pre-FMM as a function of K for N = 103

(10 < K < 100). Determine Kopt experimentally and compare with the theoretical evaluations (use
actual p). Scale Kopt (N) for computations with varying N. Plot your scaled function Kopt (N) .

4. Provide a graph of actual error (between the standard and the fast method with K = Kopt (N) ) for
N varying between 102 and 103 and the truncation number used.

5. Provide a graph that compares the CPU time required by the straightforward method and the Pre-
FMM for N varying between 102 and 103 for straightforward and N varying between 102 and 104 for
the optimized Pre-FMM. Compare results with theoretical complexities of the algorithms.

6. Find the “break-even” point (i.e. N at which the “Fast” method requires the same CPU time as the
straightforward method) for your implementation.

1.1 Appendix: One of the ways to make a data structure for 1D-FMM

We have two sets of points X and Y (sources and evaluation points). Assume that these arrays are sorted.
(Use the Matlab sort function to sort X after it is generated and find Y as points between sources, so Y
is also automatically sorted). You can then use “bookmarks” to have fast determination of all sources or
evaluation points, belonging to a particular box.

The idea is the following: Because X is ordered you can create arraysBookmarkLeft andBookmarkRight
(in the current problem you may find that one array is sufficient, but you may use two, for easier and faster
search). These arrays contain bookmarks which show the bounds of X indices as shown in the table below.
To generate such a bookmark table you need only O(N) operations (one pass through your ordered data)
and it takes memory of order O(K).

BoxIndex 1 2 ... k ... K
Set xn0

, ..., xn1
, xn1+1, ..., xn2

, ... xnk−1+1, ..., xnk
, ... xnK−1+1, ..., xnK

,
BookmarkLeft n0 n1 + 1 ... nk−1 + 1 ... nK−1 + 1
BookmarkRight n1 n2 ... nk ... nK

If it appears that the Box with index k is empty you may put BookmarkLeft(k) and BookmarkRight(k)
equal to zero. You also may create an array of NonEmptyBoxes where you store consequently the non-
empty box indexes k only, so it looks like {k1, ..., kL} , where k1, ..., kL are indices of the nonempty-boxes.
In this case you will skip possible empty boxes and your program will be faster (if such boxes exist). A
similar bookmark table should be also created for Y and non-empty evaluation box indexes can be stored in
an array.

Write a Matlab function SetDataStructure(Set,K),which returns you arraysBookmarkLeft, BookmarkRight,
and NonEmptyBoxes.

Call this function twice with Set = X and Set = Y.
Then the procedure of going over non-empty boxes with respect to evaluation points looks like
for k = EvaluationonNonEmptyBoxes

for j = EvaluationBookmarkLeft(k) : EvaluationBookmarkRight(k)
y = Y (j); % get the evaluation point coordinate in this box;
[Required operations with y];

end;
end;
Based on this idea you can also create your program which for given Evaluation Box runs through

appropriate source boxes.

c©N.A. Gumerov & R. Duraiswami, 2002-2011. All rights reserved. Do not distribute.2


