
Problem (Homework 1)
Compute matrix-vector product

V = AU,   #   

or

vi = ui + ∑
j=1

N

uj(xi − xj )n, j = 1, . . . ,N.   #   

where

A =

1 (x1 − x2)n (x1 − x3)n . . . (x1 − xN)n

(x2 − x1)n 1 (x2 − x3)n . . . (x2 − xN)n

(x3 − x1)n (x3 − x2)n 1 . . . (x3 − xN)n

. . . . . . . . . . . . . . .
(xN − x1)n (xN − x2)n (xN − x3)n . . . 1

, U =

u1

u2

u3

. . .
uN

, V =

v1

v2

v3

. . .
vN

,   #   

and x1, . . . ,xN, u1, . . . ,uN, are given. The matrix size, N > 0, and the power, n > 0, are a given
(fixed) positive integers.

Homework 1
1. Derive a formula that can be used for the “Fast” (O(N)) method at arbitrary n.
2. Write a code that implements both straightforward computation based on Eq. (ref: 1.1) and

the “Fast” method.
3. Check that both codes produce the same (with the machine precision) results. Provide a

graph of the absolute maximum error between the straightforward and “Fast” method for
for n = 5 and N varying between 102 and 103.

4. Provide a graph that compares the CPU time required by the straightforward and the
“Fast” method for n = 5 and N varying between 102 and 103 for straightforward and N
varying between 102 and 104 for the “Fast” method.

5. Make a conclusion about the complexity of each method.

Hints (Homework 1)
1. Use the Newton binomial theorem

(a + b)n = an +
n
1

an−1b +
n
2

an−2b2 +. . .+bn = ∑
k=0

n n
k

an−kbk,   #   

where the binomial coefficients are



n
k

= n(n − 1). . . (n − k + 1)
1  2 . . . k = n!

(n − k)!k! .   #   

2. Use the language of your preference (we recommend Matlab, since it would be easy to
plot the output results). Do not use libraries or standard routines for straightforward
computations, but do straightforward summation exactly according Eq. (ref: 1.1). Be sure
that you can vary input parameters x1, . . . ,xN, u1, . . . ,uN.

3. Take some N (e.g. N = 10), and random x1, . . . ,xN, u1, . . . ,uN ∈ [0,1]. Try for a few n.
Check the difference between vectors V computed with the two codes and the same N,n,
and x1, . . . ,xN, u1, . . . ,uN .When the codes will produce almost the same results plot the
required graph of error. The maximum absolute error is defined as

error = max
i=1,...,N

vi
straightforward − vi

fast .   #   

4. For CPU time measurement use standard timer functions that allow to find the time before
the routine started and after it finished, and take the time difference. In Matlab the CPU
time measurements can be done with matlab function cputime (see Matlab help). Vary N
in logarithmic scale. As soon as the codes are tested for consistency, you can use arbitrary
x1, . . . ,xN, u1, . . . ,uN ∈ [0,1] for the CPU time measurements. Provide the graph CPU
time vs N in the logarithmic coordinates.

5. In logarithmic coordinates plot lines corresponding to linear and quadratic dependences of
the CPU time on N and compare with your computational results.


