CMSC 858M/AMSC 698R Fast Multipole Methods

Nail A. Gumerov \& Ramani Duraiswami
Lecture 22

Outline

- Problems related to the Laplace and Helmholtz equations
- Direct factorization of Green's functions
- Biharmonic equation
- Stokes equations
- Representations via multiple scalar functions
- Conversion operators
- Examples
- Biharmonic equation
- Polyharmonic equations
- Constrained vector Laplace equation
- Maxwell equations
- Stokes equations

Problems related to the Laplace and Helmholtz equations

Biharmonic equation (elasticity, Stokes flows, RBF interpolation)
$\nabla^{4} \psi=0$
Polyharmonic equation (RBF interpolation, function approximation)

$$
\nabla^{2 n} \psi=0
$$

Constrained vector Laplace equation (vortical flows, vector potentials)

$$
\nabla^{2} \mathbf{u}=\mathbf{0}, \quad \nabla \cdot \mathbf{u}=0
$$

Stokes equations (incompressible fluid dynamics at low Reynolds numbers)

$$
\nabla^{2} \mathbf{v}=\nabla p, \quad \nabla \cdot \mathbf{v}=0
$$

Time harmonic Maxwell equations (electromagnetism)

$$
\nabla \times \mathbf{E}=i \omega \mu \mathbf{H}, \quad \nabla \times \mathbf{H}=-i \omega \in \mathbf{E}, \quad \nabla \cdot \mathbf{E}=0, \quad \nabla \cdot \mathbf{H}=0
$$

Direct factorization of Green's functions

- Many problems can be reduced to summation of singularities, such as Green's functions (monopoles) and their derivatives (multipoles)
- Examples: Boundary element methods, singularity methods, RBF interpolation
- Green's functions for some complex equations can be factored, so the problem may reduce to several summations with Laplacian or other known kernels.

Example 1: Biharmonic equation

Fu \& Rodin (2000)

Complexity = 5 runs of the FMM for the Laplace equation

$$
v_{j}=\sum_{i=1}^{N} u_{i} G\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\frac{1}{8 \pi} \sum_{i=1}^{N} u_{i}\left|\mathbf{y}_{j}-\mathbf{x}_{i}\right|
$$

$$
=\frac{1}{8 \pi} \sum_{i=1}^{N} u_{i} \frac{\left|\mathbf{y}_{j}-\mathbf{x}_{i}\right|^{2}}{\left|\mathbf{y}_{j}-\mathbf{x}_{i}\right|}=\frac{1}{8 \pi} \sum_{i=1}^{N} u_{i} \frac{\left(\mathbf{y}_{j}-\mathbf{x}_{i}\right) \cdot\left(\mathbf{y}_{j}-\mathbf{x}_{i}\right)}{\left|\mathbf{y}_{j}-\mathbf{x}_{i}\right|}
$$

$$
=\frac{\left|\mathbf{y}_{j}\right|^{2}}{2} \sum_{i=1}^{N} \frac{u_{i}}{4 \pi\left|\mathbf{y}_{j}-\mathbf{x}_{i}\right|}-\mathbf{y}_{j} \cdot \sum_{i=1}^{N} \frac{\mathbf{x}_{i} u_{i}}{4 \pi\left|\mathbf{y}_{j}-\mathbf{x}_{i}\right|}+\frac{1}{2} \sum_{i=1}^{N} \frac{\left|\mathbf{x}_{i}\right|^{2} u_{i}}{4 \pi\left|\mathbf{y}_{j}-\mathbf{x}_{i}\right|}
$$

$$
G^{(h)}(\mathbf{y}, \mathbf{x})=\frac{1}{4 \pi|\mathbf{y}-\mathbf{x}|}
$$

Example 1: Biharmonic equation

In fact, complexity < 5 FMMs, since direct summation Can be performed just one time

Assume well balanced FMM for the Laplace kernel:
Cost of dense matrix-vector product $=$ Cost of sparse matrix vector product $=1 / 2$ of total FMM cost.

Then the total cost is 5 Dense products +1 Sparse product $=3$ FMMs

Example 2: Stokes equations

Stokeslets

$$
\begin{aligned}
S_{i j}(\mathbf{y}, \mathbf{x}) & =\frac{\delta_{i j}}{|\mathbf{y}-\mathbf{x}|}+\frac{\left(y_{i}-x_{i}\right)\left(y_{j}-x_{j}\right)}{|\mathbf{y}-\mathbf{x}|^{3}}, \quad i, j=1,2,3 \\
F_{i, m} & =\sum_{n=1}^{N} \sum_{j=1}^{3} S_{i j}\left(\mathbf{y}_{m}, \mathbf{x}_{n}\right) f_{j, n}, \quad i=1,2,3, \quad m=1, \ldots, M
\end{aligned}
$$

Stresslets

$$
\begin{aligned}
& D_{i j}(\mathbf{y}, \mathbf{x} ; \mathbf{n})=-\sum_{k=1}^{3} \frac{\left(y_{i}-x_{i}\right)\left(y_{j}-x_{j}\right)\left(y_{k}-x_{k}\right) n_{k}}{|\mathbf{y}-\mathbf{x}|^{5}}, \quad i, j=1,2,3 \\
& U_{i, m}=\sum_{n=1}^{N} \sum_{j=1}^{3} D_{i j}\left(\mathbf{y}_{m}, \mathbf{x}_{n} ; \mathbf{n}_{n}\right) u_{j, n}, \quad i=1,2,3, \quad m=1, \ldots, M
\end{aligned}
$$

Example 2: Stokes equations

Tornberg, Greengard (2008)
Stokeslet summation (Similarly, stresslet summation, see the paper)

$$
\begin{gathered}
S_{i j}(\mathbf{y}, \mathbf{x})=\left[\delta_{i j}-\left(y_{j}-x_{j}\right) \frac{\partial}{\partial y_{i}}\right] \frac{1}{|\mathbf{y}-\mathbf{x}|} \\
F_{i, m}=\sum_{n=1}^{N} \sum_{j=1}^{3} S_{i j}\left(\mathbf{y}_{m}, \mathbf{x}_{n}\right) f_{j, n} \\
=\sum_{n=1}^{N} \sum_{j=1}^{3}\left[\delta_{i j}-y_{j, m} \frac{\partial}{\partial y_{i, m}}\right] \frac{f_{j, n}}{\left|\mathbf{y}_{m}-\mathbf{x}_{n}\right|}+\sum_{n=1}^{N} \sum_{j=1}^{3} x_{j, n} \frac{\partial}{\partial y_{i, m}} \frac{f_{j, n}}{\left|\mathbf{y}_{m}-\mathbf{x}_{n}\right|} \\
=\sum_{j=1}^{3}\left[\delta_{i j}-y_{j, m} \frac{\partial}{\partial y_{i, m}}\right] \sum_{n=1}^{N} \frac{f_{j, n}}{\left|\mathbf{y}_{m}-\mathbf{x}_{n}\right|}+\frac{\partial}{\partial y_{i, m}} \sum_{n=1}^{N} \frac{\mathbf{x}_{n} \cdot \mathbf{f}_{n}}{\left|\mathbf{y}_{m}-\mathbf{x}_{n}\right|} \\
3 \mathrm{FMMs}
\end{gathered}
$$

Representations via multiple scalar functions

Scalar function

$$
\begin{array}{ll}
\phi(\mathbf{y}) \rightarrow\left(\phi_{1}(\mathbf{y}), \phi_{2}(\mathbf{y}), \ldots, \phi_{K}(\mathbf{y}) ; \mathbf{y} ; \nabla_{\mathbf{y}}\right) & \begin{array}{l}
\text { Representations in } \\
\text { the reference frame }
\end{array} \\
\mathbf{v}(\mathbf{y}) \rightarrow\left(\phi_{1}(\mathbf{y}), \phi_{2}(\mathbf{y}), \ldots, \phi_{K}(\mathbf{y}) ; \mathbf{y} ; \nabla_{\mathbf{y}}\right) & \begin{array}{l}
\text { centered at } 0 .
\end{array}
\end{array}
$$

Independent solution of Laplace, Helmholtz, or other equation, for which FMM is available

Translation

$$
\begin{aligned}
\phi(\mathbf{y}) & =\mathcal{T}(\mathbf{t})[\phi(\mathbf{y})]=\phi(\mathbf{y}+\mathbf{t}) \\
& \rightarrow\left(\phi_{1}(\mathbf{y}+\mathbf{t}), \phi_{2}(\mathbf{y}+\mathbf{t}), \ldots, \phi_{K}(\mathbf{y}+\mathbf{t}) ; \mathbf{y}+\mathbf{t} ; \nabla_{\mathbf{y}+\mathbf{t}}\right) \\
& \rightarrow\left(\phi_{1}(\mathbf{y}), \phi_{2}(\mathbf{y}), \ldots, \phi_{K}(\mathbf{y}) ; \mathbf{y}+\mathbf{t} ; \nabla_{\mathbf{y}}\right)
\end{aligned}
$$

Look for representation in the form

$$
\begin{gathered}
\phi(\mathbf{y}) \rightarrow\left(\boldsymbol{\phi}_{1}(\mathbf{y}), \widetilde{\phi}_{2}(\mathbf{y}), \ldots, \boldsymbol{\phi}_{K}(\mathbf{y}) ; \mathbf{y} ; \nabla_{\mathbf{y}}\right) \\
\left(\widetilde{\phi}_{1}(\mathbf{y}), \boldsymbol{\phi}_{2}(\mathbf{y}), \ldots, \widetilde{\phi}_{K}(\mathbf{y})\right)^{T}=\mathscr{C}(\mathbf{t})\left(\phi_{1}(\mathbf{y}), \phi_{2}(\mathbf{y}), \ldots, \phi_{K}(\mathbf{y})\right)^{T} \\
\text { Conversion operator (linear!) }
\end{gathered}
$$

Example 1: Biharmonic equation

$$
\begin{aligned}
\nabla^{4} \phi & =0, \\
\phi(\mathbf{r}) & =\phi_{1}(\mathbf{r})+r^{2} \phi_{2}(\mathbf{r}), \quad \nabla^{2} \phi_{1}=0, \quad \nabla^{2} \phi_{2}=0 . \\
\phi(\mathbf{r}) & =\phi(\mathbf{r}+\mathbf{t})=\phi_{1}(\mathbf{r}+\mathbf{t})+|\mathbf{r}+\mathbf{t}|^{2} \phi_{2}(\mathbf{r}+\mathbf{t}) \\
& =\phi_{1}(\mathbf{r})+(\mathbf{r}+\mathbf{t}) \cdot(\mathbf{r}+\mathbf{t}) \phi_{2}(\mathbf{r}) \\
& =\left[\phi_{1}(\mathbf{r})+t^{2} \phi_{2}(\mathbf{r})\right]+2(\mathbf{r} \cdot \mathbf{t}) \phi_{2}(\mathbf{r})+r^{2} \phi_{2}(\mathbf{r}) \\
& =\phi_{1}(\mathbf{r})+r^{2} \phi_{2}(\mathbf{r}) .
\end{aligned}
$$

It is very convenient to consider the RCR-decomposition:
Rotation does not affect basic decomposition, translation should be only along the z-axis

Example 1: Biharmonic equation

$$
\begin{aligned}
z R_{n}^{m}(\mathbf{r}) & =-\frac{1}{2 n+1}\left[(n+m+1)(n-m+1) R_{n+1}^{m}(\mathbf{r})+r^{2} R_{n-1}^{m}(\mathbf{r})\right] \\
& =\gamma_{n}^{m} R_{n+1}^{m}+\delta_{n} r^{2} R_{n-1}^{m} \\
\phi_{2}(\mathbf{r}) & =\sum_{n=0}^{\infty} \sum_{m=-n}^{n} \phi_{2, n}^{m} R_{n}^{m}, \\
z \phi_{2}(\mathbf{r}) & =\sum_{n=0}^{\infty} \sum_{m=-n}^{n} \phi_{2, n}^{m} z R_{n}^{m}=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} \phi_{m, n}^{m}\left(\gamma_{n}^{m} R_{n+1}^{m}+\delta_{n} r^{2} R_{n-1}^{m}\right) \\
& =\sum_{n=0}^{\infty} \sum_{m=-n}^{n} \phi_{2, n-1}^{m} \gamma_{n-1}^{m} R_{n}^{m}+r^{2} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \delta_{n+1} \phi_{2, n+1}^{m} R_{n}^{m}
\end{aligned}
$$

Representation of the conversion operator in the space of R -expansion coefficients

$$
\begin{array}{ll}
\phi_{1, n}^{m}=\phi_{1, n}^{m}+t^{2} \phi_{2, n}^{m}-2 t \frac{(n+m)(n-m)}{2 n-1} \phi_{2, n-1}^{m}, & \text { Very sparse matrix! } \\
\phi_{2, n}^{m}=\phi_{2, n}^{m}-\frac{2 t}{2 n+3} \phi_{2, n+1}^{m} . & \text { Only 2 FMMs are } \\
\text { needed! }
\end{array}
$$

Similarly for S-expansions. See Gumerov, Duraiswami (2006).

Performance of 3D Fay fuifor for biharmonic kernel

(3.2 GHz Intel Xeon, 3.5 GB RAM)

Example 2: Polyharmonic equation

$$
\begin{gathered}
\nabla^{2 k} \phi=0 \\
\phi(\mathbf{r})=\phi_{1}(\mathbf{r})+r^{2} \phi_{2}(\mathbf{r})+\ldots+r^{2 k-2} \phi_{k}(\mathbf{r}), \quad \nabla^{2} \phi_{j}=0 . \\
\phi(\mathbf{r})=\phi(\mathbf{r}+\mathbf{t})=\mathcal{T}(\mathbf{t}) \sum_{j=1}^{k}(\mathbf{r} \cdot \mathbf{r})^{2 j-2} \phi_{j}(\mathbf{r}) \\
=\sum_{j=1}^{k}[(\mathbf{r}+\mathbf{t}) \cdot(\mathbf{r}+\mathbf{t})]^{2 j-2} \phi_{j}(\mathbf{r}) \\
=\sum_{j=1}^{k}\left[r^{2}+2(\mathbf{r} \cdot \mathbf{t})+t^{2}\right]^{j-1} \phi_{j}(\mathbf{r}) .
\end{gathered}
$$

Recursive reduction to the biharmonic case.

Example 3: Constrained vector Laplace equation

$$
\begin{gathered}
\nabla^{2} \omega=\mathbf{0}, \quad \nabla \cdot \omega=0, \\
\omega=\nabla \psi+\nabla \times(\mathbf{r} \varpi), \quad \nabla^{2} \psi=0, \quad \nabla^{2} \varpi=0 \\
\widehat{\omega}(\mathbf{r})=\omega(\mathbf{r}+\mathbf{t})=\nabla \psi(\mathbf{r}+\mathbf{t})+\nabla \times((\mathbf{r}+\mathbf{t}) \boldsymbol{\varpi}(\mathbf{r}+\mathbf{t})) \\
=\nabla \hat{\psi}(\mathbf{r})+\nabla \times((\mathbf{r}+\mathbf{t}) \widehat{\varpi}(\mathbf{r}))=\nabla \widehat{\psi}(\mathbf{r})+\nabla \times(\mathbf{r} \widehat{\varpi}(\mathbf{r}))+\nabla \times(\mathbf{t} \widehat{\omega}(\mathbf{r})), \\
\widehat{\omega}=\mathcal{T}_{\mathbf{t}} \omega, \quad \widehat{\psi}=\mathcal{T}_{\mathbf{t}} \psi, \quad \widehat{\pi}=\mathcal{T}_{\mathbf{t}} \varpi . \\
\widehat{\omega}(\mathbf{r})=\nabla \widetilde{\psi}+\nabla \times(\mathbf{r} \widetilde{\pi}), \\
\widetilde{\psi}=\mathcal{C}_{11} \widehat{\psi}+\mathcal{C}_{12} \widehat{\pi}, \quad \widetilde{\pi}=\mathcal{C}_{21} \hat{\psi}+\mathcal{C}_{22} \widehat{\pi}, \\
\mathcal{C}_{11}=\mathcal{I}, \quad \mathcal{C}_{21}=0 .
\end{gathered}
$$

Example 3: Constrained vector Laplace equation

$$
\begin{aligned}
& \widetilde{\psi}=\hat{\psi}+\mathcal{C}_{12} \widehat{\boldsymbol{\sigma}}=\hat{\psi}+\psi^{\prime}, \\
& \widetilde{\boldsymbol{\pi}}=\mathcal{C}_{22} \hat{\boldsymbol{m}}=\widehat{\boldsymbol{\pi}}+\boldsymbol{\pi}^{\prime} . \\
& \nabla \psi^{\prime}+\nabla \times\left(\mathbf{r} \pi^{\prime}\right)=\nabla \times(\mathbf{t} \widehat{\pi}) . \\
& \mathbf{r} \cdot \nabla \psi^{\prime}=\mathbf{r} \cdot \nabla \times(\mathbf{t} \widehat{\pi})=\mathbf{r} \cdot(\nabla \widehat{\boldsymbol{\pi}} \times \mathbf{t})=-(\mathbf{r} \times \mathbf{t}) \cdot \nabla \hat{\boldsymbol{\omega}} . \\
& \nabla \times \nabla \times\left(\mathbf{r} \boldsymbol{\sigma}^{\prime}\right)=\nabla \times \nabla \times(\mathbf{t} \hat{\boldsymbol{w}}) .
\end{aligned}
$$

Generic vector
identities for harmonic functions

$$
\begin{aligned}
& \nabla \times \nabla \times\left(\mathbf{r} \varpi^{\prime}\right)=\nabla\left(\boldsymbol{\pi}^{\prime}+\mathbf{r} \cdot \nabla \varpi^{\prime}\right), \\
& \nabla \times \nabla \times(\mathbf{t} \hat{\pi})=\nabla(\mathbf{t} \cdot \nabla \hat{\pi}),
\end{aligned}
$$

$$
\pi^{\prime}+\mathbf{r} \cdot \nabla \pi^{\prime}=\mathbf{t} \cdot \nabla \widehat{\boldsymbol{\pi}} .
$$

Since an arbitrary
constant can be added to potential

Example 3: Constrained vector Laplace equation

These operators can be represented via sparse matrices in the space of expansion coefficients

$$
\begin{gathered}
\mathcal{D}_{\mathbf{r}}=\mathbf{r} \cdot \nabla, \quad \mathcal{D}_{\mathbf{t}}=\mathbf{t} \cdot \nabla, \quad \mathcal{D}_{\mathbf{r} \times \mathbf{t}}=(\mathbf{r} \times \mathbf{t}) \cdot \nabla . \\
\mathcal{D}_{\mathbf{r}} \psi^{\prime}=-\mathcal{D}_{\mathbf{r} \times \mathbf{t}} \widehat{\sigma}, \quad\left(\mathcal{I}+\mathcal{D}_{\mathbf{r}}\right) \varpi^{\prime}=\mathcal{D}_{\mathbf{t}} \widehat{\varpi} .
\end{gathered}
$$

Finally

$$
\begin{gathered}
\widetilde{\psi}=\hat{\psi}-\mathcal{D}_{\mathbf{r}}^{-\sqrt[1]{\mathcal{D}_{\mathbf{r} \times t}} \hat{\pi}}, \\
\widetilde{\pi}=\widehat{\boldsymbol{\pi}}+\left(\mathcal{I}+\mathcal{D}_{\mathbf{r}}\right)^{-1} \mathcal{D}_{\mathbf{t}} \hat{\boldsymbol{w}} . \\
\mathcal{C}_{12}=-\mathcal{D}_{\mathbf{r}}^{-1} \mathcal{D}_{\mathbf{r} \times \mathbf{t}}, \quad \mathcal{C}_{22}=\mathcal{I}+\left(\mathcal{I}+\mathcal{D}_{\mathbf{r}}\right)^{-1} \mathcal{D}_{\mathbf{t}} .
\end{gathered}
$$

2 FMMs are needed for this equation!

Example 4: Time harmonic Maxwell equations

$$
\begin{gathered}
\mathbf{E}=\nabla \phi \times \mathbf{r}+\nabla \times(\nabla \psi \times \mathbf{r}), \quad \mathbf{H}=\frac{1}{i \omega \mu}\left(k^{2} \nabla \psi \times \mathbf{r}+\nabla \times(\nabla \phi \times \mathbf{r})\right), \\
\left(\nabla^{2}+k^{2}\right) \phi=0, \quad\left(\nabla^{2}+k^{2}\right) \psi=0 . \\
\widehat{\mathbf{E}(\mathbf{r})=\mathbf{E}(\mathbf{r}+\mathbf{t})=\nabla \times(\mathbf{r} \phi)+\nabla \times \nabla \times(\mathbf{r} \hat{\psi})+\nabla \times(\mathbf{t} \hat{\phi})+\nabla \times \nabla \times(\mathbf{t} \hat{\psi}),} \\
\widehat{\mathbf{E}}=\mathcal{T}(\mathbf{t})[\mathbf{E}], \quad \begin{aligned}
& \phi=\mathcal{T}(\mathbf{t})[\phi], \quad \hat{\psi}=\mathcal{T}(\mathbf{t})[\psi], \\
& \widehat{\mathbf{E}}(\mathbf{r})=\nabla \times(\mathbf{r} \widetilde{\phi})+\nabla \times \nabla \times(\mathbf{r} \widetilde{\psi}), \text { Gumerov \& } \\
& \text { Duraiswami } \\
& \widetilde{\psi}=\mathcal{C}_{11}[\phi]+\mathcal{C}_{12}[\hat{\psi}], \text { (2007) } \\
& \widetilde{\psi}=\mathcal{C}_{21}[\phi]+\mathcal{C}_{22}[\widehat{\psi}] .
\end{aligned}
\end{gathered}
$$

Example 5: Stokes equations

- Paper under preparation, but idea is similar (3 FMMs are needed)

