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Partial Differential Equations 

Almost all the elementary and numerous advanced parts of theoretical physics are 

formulated in terms of differential equations (DE).  

                  Newton’s Laws 

                 Maxwell equations 

                 Schrodinger and Dirac equations  etc.        
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Since the dynamics of many physical systems involve just two derivatives, 

DE of second order occur most frequently in physics. e.g.,  

the steady state distribution of heat 

acceleration in classical mechanics 
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Ordinary differential equation (ODE)    Partial differential equation (PDE) 
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Examples of  PDEs  

•   Laplace's eq.:   

   occurs in  

        a. electromagnetic phenomena,   b. hydrodynamics, 

        c. heat flow,                                 d. gravitation. 

• Poisson's eq.,  

      In contrast to the homogeneous Laplace eq., Poisson's eq. is     non-

homogeneous with a source term  
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The wave (Helmholtz) and time-independent diffusion eqs 

     These eqs. appear in such diverse phenomena as 

           a. elastic waves in solids,        b. sound or acoustics, 

           c. electromagnetic waves,         d. nuclear reactors. 
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The time-dependent wave eq., 

 

 

Subject to initial and boundary 

conditions 

Take Fourier Transform 

 

 

Boundary value problem per freq 

 

 

• Helmholtz equation 
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The time-dependent heat equation 

 

 

Subject to initial and boundary 

conditions 

Biharmonic Equation 

 

. 

      

Numerical Solution of PDEs 
• Finite Difference Methods  

– Approximate the action of the operators 

– Result in a set of sparse matrix vector equations 

– In 3D a discretization will have Nx×  Ny×  Nz points 

– Iterative methods such as multigrid give good performance 

• Finite Element Methods 

– Approximate weighted integral of the equation over element 

– Also Result in a set of sparse matrix vector equations 

– In 3D a discretization will have Nx×  Ny×  Nz elements 

– Iterative methods well advanced 

• Meshing the domain is a big problem with both 

– Creating a “good mesh” takes longer than solving problem 

• Cannot handle infinite domains well 
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Boundary Element Methods 
• Very commonly used with FMM  

• Based on a “Boundary Integral” forumation of PDE 

• Applicable to equations with known Green’s functions 

• Lead to a boundary only formulation – O(N2) 

unknowns as opposed to O(N3) unknowns 

• Lead to dense matrices 

– Preconditioning theory not well developed 

• Setting up equations requires analytical and 

computational work 

• Handle infinite domains well 

• Method of choice in scattering problems (EM, 

Acoustic), potential flow, Stokes flow, Cracks, etc. 5 

Outline 

• Review 

• Vector analysis (Divergence & Gradient of potential) 

• 3-D Cartesian coordinates & Spherical coordinates 

• Laplace’s equation and Helmholtz’ equation 

• Green's function & Green's theorem 

• Boundary element method 

• FMM 
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Gauss Divergence theorem 

 

 

 

 

 

 

 

 

 

• In practice we can write  

W 

Integral Definitions of div, grad and curl 

Elemental volume dt 

with surface DS 
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Green’s formula 

Laplace’s equation 
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Helmholtz equation 

•   

 

 

 

• Discretize surface S into triangles 

• Discretize` 
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Green’s formula 
• Recall that the impulse-response is sufficient to characterize 

a linear system 

• Solution to arbitrary forcing constructed via convolution 

• For a linear boundary value problem we can likewise use 

the solution to a delta-function forcing to solve it. 

• Fluid flow, steady-state heat transfer,  gravitational 

potential, etc. can be expressed in terms of Laplace’s 

equation 

• Solution to delta function forcing, without boundaries, is 

called free-space Green’s function 

Boundary Element Methods 

 

 

 

 

• Boundary conditions provide value of fj or qj 

• Becomes a linear system to solve for the other 
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Accelerate via FMM 
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Example 2: Boundary element 

method 
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Boundary element method(2) 

Surface discretization: 

System to solve: 

Use iterative methods with fast matrix-vector multiplier: 

Non-FMM’able, but sparse FMM’able, dense 

Helmholtz equation 
Performance tests 

Mesh:  249856 vertices/497664 elements 

kD=29, Neumann problem kD=144, Robin problem 

(impedance, sigma=1) 

(some other scattering problems were solved) 
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FMM & Fluid Mechanics 
• Basic Equations 

1 
2 
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Helmholtz Decomposition 

• Key to integral equation and particle methods 
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Potential Flow 

 

 

 

 

 

 

• Knowledge of the potential is 
sufficient to compute velocity 
and pressure 

• Need a fast solver for the 
Laplace equation 

• Applications – panel methods 
for subsonic flow, water 
waves, bubble dynamics, …  

Crum, 1979 

Boschitsch et al, 1999 

© Gumerov & Duraiswami, 2003 

BEM/FMM Solution Laplace’s Equation 

 

 

 

 

 

 

 

 

 

• Jaswon/Symm (60s) Hess & 
Smith (70s),   

• Korsmeyer et al 1993, Epton 
& Dembart 1998, 
Boschitsch & Epstein 1999  

Lohse, 2002 



11/1/2011 

13 

Stokes Flow 

• Green’s function (Ladyzhenskaya 
1969, Pozrikidis 1992) 

 

 

 

 

• Integral equation formulation 

 

 

• Stokes flow simulations remain a 
very important area of research 

• MEMS, bio-fluids, emulsions, etc. 

• BEM formulations (Tran-Cong & 
Phan-Thien 1989, Pozrikidis 1992) 

• FMM (Kropinski 2000 (2D), Power 
2000 (3D)) 

Motion of spermatozoa 

Cummins et al 1988 

Cherax quadricarinatus. 

MEMS force calculations 

(Aluru & White, 1998 

Rotational Flows and VEM 
• For rotational flows 

ÇVorticity released at boundary layer or trailing edge and 

advected with the flow  

üSimulated with vortex particles 

ÇEspecially useful where flow is mostly irrotational 

ÇFast calculation of Biot-Savart integrals 

(x1,y1,z1) 

(x2,y2,z2) 

G nl

Evaluation 

point 

x

(where y is the 

mid point of the 

filament) 

(circulation 

strength) 

(Far field) 
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Vorticity formulations of NSE 

 

 

• Problems with boundary conditions for this equation (see e.g., 
Gresho, 1991) 
ÇDivergence free and curl-free components are linked only by boundary 

conditions 

ÇSplitting is invalid unless potentials are consistent on boundary 

• Recently resolved by using the generalized Helmholtz 
decomposition (Kempka et al, 1997; Ingber & Kempka, 2001) 

• This formulation uses a kinematically consistent Helmholtz 
decomposition in terms of boundary integrals 

• When widely adopted will need use of boundary integrals, and 
hence the FMM 
ÇPreliminary results in  Ingber & Kempka, 2001 

Generalized Helmholtz Decomposition 
• Helmholtz decomposition                             leaves too many 

degrees of freedom 

• Way to achieve decomposition valid on boundary and in domain, 
with consistent values is to use the GHD 

 

 

 

 

 

 

 

 

 

• D is the domain dilatation (zero for incompressible flow) 

• Requires solution of a boundary integral equation as part of the 
solution => role for the FMM in such formulations 


