Partial Differential Equations

Almost all the elementary and numerous advanced parts of theoretical physics are
formulated in terms of differential equations (DE).

Newton’s Laws
Maxwell equations
Schrodinger and Dirac equations etc.

Since the dynamics of many physical systems involve just two derivatives,

DE of second order occur most frequently in physics. €.£.,
2

dt?

acceleration in classical mechanics F=ma=m

the steady state distribution of heat p?

Ordinary differential equation (ODE) Partial differential equation (PDE)

Examples of PDEs

® Laplace'seq:p?y =0
occurs in
a. electromagnetic phenomena, b. hydrodynamics,
c. heat flow, d. gravitation.
+ Poisson's eq., Py = 4/ ,

In contrast to the homogeneous Laplace eq., Poisson's eq. is  non-
homogeneous with a source term -7/ ¢

The wave (Helmholtz) and time-independent diffusion eqs D% °k’>y &

These eqs. appear in such diverse phenomena as
a. elastic waves in solids, b. sound or acoustics,
c. electromagnetic waves, d. nuclear reactors.
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The time-dependent wave eq.,
1 0%’ (r,t)
— T =V (rt),
2 2 P (x,t)
Subject to initial and boundary
conditions

Take Fourier Transform
Y (X,Y,Z,W) = f‘i p'(x Y,z t)e dt
Boundary value problem per freq

VI (1) + K (1) =0, k=",

Helmholtz equation

The time-dependent heat equation
du 9
% aVu=0
Subject to initial and boundary
conditions

Biharmonic Equation

Vi =0

Numerical Solution of PDEs

Finite Difference Methods

— Approximate the action of the operators

— Result in a set of sparse matrix vector equations

— In 3D a discretization will have N, x N, x N, points
— lterative methods such as multigrid give good performance

Finite Element Methods
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— Approximate weighted integral of the equation over element
— Also Result in a set of sparse matrix vector equations
— In 3D a discretization will have N, x N,x N, elements
— lterative methods well advanced

Meshing the domain is a big problem with both

— Creating a “good mesh” takes longer than solving problem

Cannot handle infinite domains well
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Boundary Element Methods
Very commonly used with FMM
Based on a “Boundary Integral” forumation of PDE
Applicable to equations with known Green’s functions

Lead to a boundary only formulation — O(N?)
unknowns as opposed to O(N3) unknowns

Lead to dense matrices
— Preconditioning theory not well developed

Setting up equations requires analytical and
computational work

Handle infinite domains well

Method of choice in scattering problems (EM,
Acoustic), potential flow, Stokes flow, Cracks, etc. |

Outline

Review

Vector analysis (Divergence & Gradient of potential)
3-D Cartesian coordinates & Spherical coordinates
Laplace’s equation and Helmholtz’ equation

Green's function & Green's theorem

Boundary element method

FMM



Gauss Divergence theorem

* The volume integral of the divergence of a vector field
equals the total outward flux of the vector through the
surface that bounds the volume.

/V-Ade/A-ndS s
Q S

Proof follows from the
definition of divergence.

* In practice we can write

/QV anythingdV = /q anything ndS

Integral Definitions of div, gradand curl

L
. 1 < / /\/
Bf 1lim o= | D=D(1). = 101
®S /\// - ’\/
. 1 ‘ n,
'D O Hmdu ()—,,D \
qu)S ds

T
3 11 1 \
b 3D lim,g g—] /
a’U Elemental volume at
®PS with surface DS
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Green’s formula

Green’s first theorem
j (WV2p + Vo - Vy)dlV = _[ \|/—

j OV + Vb « V)V = j q>a"’

Green'’s second theorem (subtracting the above
two)

jgg(‘“vzd)—d)vzw)dl’ ,[ (w(d’ q)(w)

Laplace’s equation
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Helmbholtz equation

Green’s.formula

_1

b0 = J (v S5V

~ G(X.y) J” (y))ds

 Discretize surface S into triangles

* Discretize’

local function in terms of local isoparametric shape
functions, i.e., as

px) = 3 0Nx)._g(x) = 3 giNi(x),
=1 =1

where usually

X €5

x &85 |

, l,_xe&5
Ni(x) = 0 -

_for constant elements..
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Green’s formula

* Recall that the impulse-response is sufficient to characterize
a linear system

 Solution to arbitrary forcing constructed via convolution

* For a linear boundary value problem we can likewise use
the solution to a delta-function forcing to solve it.

* Fluid flow, steady-state heat transfer, gravitational
potential, etc. can be expressed in terms of Laplace’s
equation ViP=0 VEP+E’P=0

* Solution to delta function forcing, without boundaries, is
called free-space Green’s function

[3

= [ TP Gy — P2 x vy ldSv.  x & C
Px) = -[ [ LwGEy -POLxy |dSm.  xe Q.

o))

Boundary Element Methods

With this discretization we can write Green identity in the form

3 z G(x -y,
%@ = Z qi J.S_ G(X — )f;.)(fS(x) — Z@ j ,_ ((g%ds{x),
=1 S: = S I,

* Boundary conditions provide value of f; or g;
» Becomes a linear system to solve for the other



Accelerate via FMM

Di(y) = j G(x — y)dS(x).

0.(y) = [ LAY i),

37 on X

Using the expansion of the Green function

Gr—r.a)=Ga-—r)= z'kz ZR;M(FH —r.2)8(r—-r.n), r—ro|l>r

Therefore, for such a y we have

D) =[Gt wds) - 33 st w0 ik [ R(x - x4)dS(x)

St
=0 j=—n

#

Comparing with Eq. (ref: el), we can determine the expansion coefficients
:1 :,n .

AP = ik [ R (x - x0)dS(x). # |

Similarly, we consider Q;(v). Here we note that since the triangle is flat its
normal, n;, does not change. Therefore,

Oily) = J‘S. M({TS(X) =n; - L. V.G(x —y)dS(x)

- Z Z S7(y — x"0) ikn,; - J‘ﬂ V. R;™(x — xD)dS(x)
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oG(x -y

0iy) - [ =D 53y < mi - [ 9.6 -3)as(x)

~(0 V) [ GO =y)dS(x) = ;- V) D).

Example 2: Boundary element
method S

Vip(x) =0, x¢el @
a¢+ﬁg—ﬁ= Y, X €S

) = op(x) . 9G(X.y) 7
o) = [ (00 S - 40 SEI Yasew), e

Lo = [ (66D g0 T8N astx), y es,

8 n(x) on(x)
Gx,y) = —L—, d=3,
o dr|x —y| '
G(x,y) =ln , d=72.
2" K-y



Boundary element method(2)

i

Surface discretization: L = ZL
s =y

[ G(x,¥)3 .\d)(\} das(x) ~ C¢)(\) SiKi(y)-
I on(x) on(x,)’

_[_", (/5(\)% dS(x) = ¢’(xz )S:Li(¥),
K.(¥) = G(x.,¥), L.(y) = M -y >R
on(x;)

System to solve:

n
1:qb(x_ ZK (x,)S, uf)((:; S L(x)Sb(x,),
=1 =1

¢>(;

a(x;)(x;) + B(x;) =y(x), j=1,...] N.

Use iterative methods with fast matrix-vector multiplier:

Zﬁiﬁit.‘ = Z Kyu; + Z Kju; = Z Ky, + Z G(X;, X, ),
i=1

[xi-x5 KR x> R XX <R xR f

Non-FMM’able, but sparse - FMM’able, dense

Performance tests

Helmbholtz ecoluation

(some

her scattering problems were solved)

Mesh: 249856 vertices/497664 elements

kD=29, Neumann problem kD=144, Robin problem
(impedance, sigma=1)
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FMM & Fluid Mechanics I

* Basic Equations

Incompressibility condition Boundary Conditions
Continuity of normal flow
V.-u=20

n-u=U-n=90
Momentum Equation

Continuity of normal and tangential stresses
du
p(at +(u'v)u) SVoTEb

(Til. — Tlfzj) ‘n=(oV-n)n— Vo
Incompressible Newtonian fluid

n
7=pl+ pu(Vu+uV)

1
No body forces and non-dimensionalize \2&
Vou=0

No slip assumption
%+(u-V)qup+R_1V2u t-u=U-1=0

Helmholtz Decomposition I

* Key to integral equation and particle methods
Separate velocity vector into dilatational and rotational parts (Batchelor, 1967)

u=Veo+VxA

Incompressibility leads to Laplace’s equation for the scalar potential ¢

V-u=Vi=0
Vector potential A is related to the vorticity w

w=Vxu=VxVxA
For irrotational flow w = 0

u=Ve, Vie=0
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Potential Flow

Inviscid, irrotational flow R — oo

Ju
((% + (u V)u)sz

Momentum equation can be integrated as

Crum, 1979

ot

* Knowledge of the potential is
sufficient to compute velocity
and pressure

e Need a fast solver for the
Laplace equation

» Applications — panel methods
for subsonic flow, water
waves, bubble dynamics, ...

oo 1
p+p ( + V(b VQD + gz> = Poo Boschitsch et al, 1999

BEM/FMM Solution Laplace’s Equation

Green’s function for Laplace’s equation V2¢ = 0 M o
Gx.y) ! VG =
X - n- = -7 8.5 ms|
Y dr oyl 4r\x—y\
Green’s identity
a¢ 0.5 ms
§¢(y)7(‘% aan(x,y)dSw / b (x )87@L x.y)d i ! ]
Single and double layer functions H

o=12_
on

|
Discretize by dividing surface into NV triangles and collocating b4

1 N P <p Lohse 2002
§(P(y) B = s Ong G, y)dS, = Z/ (911 (%, y)dS,
Boundary conditions * JaSWOH/Symm (608) Hess &

i i Smith (70s),

G = VO p=pmot= (E +5V¢-Vo+9:Je Korsmeyer et al 1993, Epton
n-Vo—0 & Dembart 1998,
© Gumerov & Duraiswami, 2003 Boschitsch & Epsteln 1999
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Stokes Flow

V.-u=0, Vp=V?u
* Green’s function (Ladyzhenskaya

1969, Pozrikidis 1992) Motion of spermatozoa
1 52 (7;1 _ '!jz') (1‘ _ y‘) Cummins et al 1988
Giy(x,y) = < U | - JS J
Ix -yl x -yl
_ 3 (@i —wi) (x5 —y;) (Te — k)
szk(xvy) - A |X—y\5

» Integral equation formulation

U; (y) -+ / O'iijjTLdez = —/ G”f]dSm
S S ~——— MEMS force calculations
¢ Stokes flow simulations remain a i (Aluru & White, 1998 J\

very important area of research 3
¢ MEMS, bio-fluids, emulsions, etc.
*  BEM formulations (Tran-Cong &
Phan-Thien 1989, Pozrikidis 1992)
* FMM (Kropinski 2000 (2D), Power
2000 (3D))

Cherax quadricarinatus.

Rotational Flows and VEM

* For rotational flows
C Vorticity released at boundary layer or trailing edge and

advected with the flow
U Simulated with vortex particles

C Especially useful where flow is mostly irrotational
C Fast calculation of Biot-Savart integrals I

«. Evaluation
point

(circulation
G strength)

Vie) = o f I'[y‘;x

(XpY1,21) g
& = (ThHna /(Farfield)

12 [xr— ) (wherey is the
Viz) = =& > 7——=3  mid point of the
filament)

|3y
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Vorticity formulations of NSE

Vorticity equation for an incompressible fluid
e +(u-Vw=(w-V)u+R 'V

* Problems with boundary conditions for this equation (see e.g.,
Gresho, 1991)

C Divergence free and curl-free components are linked only by boundary
conditions

C Splitting is invalid unless potentials are consistent on boundary

» Recently resolved by using the generalized Helmholtz
decomposition (Kempka et al, 1997; Ingber & Kempka, 2001)

* This formulation uses a kinematically consistent Helmholtz
decomposition in terms of boundary integrals

* When widely adopted will need use of boundary integrals, and
hence the FMM

C Preliminary results in Ingber & Kempka, 2001

Generalized Helmholtz Decomposition
* Helmholtz decomposition y=v¢+v x A leaves too many
degrees of freedom

* Way to achieve decomposition valid on boundary and in domain,
with consistent values is to use the GHD

0 outside R and §
0u(xp,)2m(d - 1)[u,(x,) — ¥ (x5) X Aa(x,)] on § (=

2n(d - 1)u(x)in R

[y (zp)-(xp ) X 4y (2,1 % (2 - %)

[x-x¢

QX)X (x-x")
lx— x4

AR(x') +I ds(x,) +
S

—[A(x,') @ uy(x,)](x - X')

|x - x]¢

J‘D(r)(z-;‘)

[x- ¢

dR(x") +I dS(x)
S
* D is the domain dilatation (zero for incompressible flow)

» Requires solution of a boundary integral equation as part of the
solution => role for the FMM in such formulations
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