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Improved Fast Gauss Transform  
 

Based on work by Changjiang Yang (2003), 
Vikas Raykar (2005), and Vlad Morariu (2007) 

Fast Gauss Transform (FGT) 

Â Originally proposed by Greengard and Strain (1991) to 
efficiently evaluate the weighted sum of Gaussians: 

 

 

Â FGT is an important variant of Fast Multipole Method 
(Greengard & Rokhlin 1987) 
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Fast Gauss Transform (contôd) 

Â The weighted sum of Gaussians 

 

 

 

 is equivalent to the matrix -vector product:  

 

 

 

 

Â Direct evaluation of the sum of Gaussians requires 
O(N2) operations. 

Â Fast Gauss transform reduces the cost to O(N logN) 
operations. 

Sources Targets 

Fast Gauss Transform (contôd) 

Â Three key components of the FGT: 

 

Â The factorization or separation of variables 

 

Â Space subdivision scheme 

 

Â Error bound analysis 
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Factorization of Gaussian 

Â Factorization is one of the key parts of the FGT. 

Â Factorization breaks the entanglements between the 
sources and targets. 

Â The contributions of the sources are accumulated at the 
centers, then distributed to each target.  

Sources Targets Sources Targets Sources Targets 

Center 

Factorization in FGT: Hermite Expansion 

Â The Gaussian kernel is factorized into Hermite functions 

 

 

where Hermite function hn(x) is defined by 

 

Â Exchange the order of the summations 

 

 

 

 

a.k.a. Moment, An 
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The FGT Algorithm 

Â Step 0: Subdivide the space into uniform boxes. 

Â Step 1: Assign sources and targets into boxes. 

Â Step 2: For each pair of source and target boxes, compute the 
interactions using one of the four possible ways:  
Â NB ·  NF, MC ·  ML: Direct evaluation 

Â NB ·  NF, MC > ML: Taylor expansion 

Â NB >  NF, MC ·  ML: Hermite  expansion 

Â NB >  NF, MC > ML: Hermite expansion --> Taylor expansion 

Â Step 3: Loop through boxes evaluating Taylor series for boxes with 
more than ML targets. 

 

 NB: # of sources in Box B  

 MC: # of targets in Box C  

 NF: cutoff of Box B  

 ML: cutoff of Box C 

 

 

Too Many Terms in Higher Dimensions 

Â The higher dimensional Hermite expansion is the 
Kronecker product of d univariate Hermite expansions. 

Â Total number of terms is O(pd), p is the number of 
truncation terms.  

Â The number of operations in one factorization is O(pd).  

  h0   h1    h2 

h0h0 h0h1 h0h2 

h1h0 h1h1 h1h2 

h2h0 h2h1 h2h2 

d=1  d=2  d=3  d>3  
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Too Many Boxes in Higher Dimensions  

Â The FGT subdivides the space into uniform boxes and 
assigns the source points and target points into boxes. 

Â For each box the FGT maintain a neighbor list. 

 

 

 

 

Â The number of the boxes increases exponentially with 
the dimensionality.  

d=1  d=2  d=3  d>3  

FGT in Higher Dimensions 

Â The FGT was originally designed to solve the problems 

in mathematical physics (heat equation, vortex 

methods, etc), where the dimension is up to 3.  

Â The higher dimensional Hermite expansion is the 

product of univariate Hermite expansion along each 

dimension. Total number of terms is O(pd). 

Â The space subdivision scheme in the original FGT is 

uniform boxes. The number of boxes grows 

exponentially with dimension. Most boxes are empty. 

Â The exponential dependence on the dimension makes 

the FGT extremely inefficient in higher dimensions.  
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Improved fast Gauss transform (IFGT) 

Improved Fast Gauss Transform 

Â Multivariate Taylor expansion 

 

Â Multivariate Hornerôs Rule 

 

Â Space subdivision based on k-center algorithm 

 

Â Error bound analysis 
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New factorization 

 

Multivariate Taylor Expansions 

Â The Taylor expansion of the Gaussian function: 

 

Â The first two terms can be computed independently.  

Â The Taylor expansion of the last term is:  

 

 

where a=(a1, 3, ad) is multi -index. 

Â The multivariate Taylor expansion about center x* :  

 

 

where coefficients Ca are given by 
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Reduction from Taylor Expansions 

Â The idea of Taylor expansion of the factored Gaussian kernel 
is first introduced in the course CMSC878R. 

Â The number of terms in multivariate Hermite expansion is 
O(pd). 

Â The number of terms in multivariate Taylor expansion  

 is            , asymptotically O(d p), a big reduction for large d. 

 

Fix p = 10, vary d = 1:20  Fix d = 10, vary p = 1:20  
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Dimension d 

Global nature of the new expansion 
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Improved Fast Gauss Transform 

Â Multivariate Taylor expansion 

 

Â Multivariate Hornerôs Rule 

 

Â Space subdivision based on k-center algorithm 

 

Â Error bound analysis 

 

 

Monomial Orders 

Â Let a=(a1, 3, an), b=(b1, 3, bn), then three standard 
monomial orders: 
Â Lexicographic order, or ñdictionaryò order: 

Â  a Á lex b iff the leftmost nonzero entry in a - b is negative. 

Â Graded lexicographic order (Veronese map, a.k.a, polynomial 
embedding):  
Â a Á grlex b iff ä1 ·  i ·  n ai < ä1 ·  i ·  n bi or (ä1 ·  i ·  n ai = ä1 ·  i ·  n bi  

and a Á lex b ). 

Â Graded reverse lexicographic order: 
Â a Á grevlex b iff ä1 ·  i ·  n ai < ä1 ·  i ·  n bi or (ä1 ·  i ·  n ai = ä1 ·  i ·  n bi  

and the rightmost nonzero entry in a - b is positive). 

Â Example:  
Â Let f(x,y,z) = xy 5z2 + x 2y3z3 + x 3, then 

Â w.r.t. lex f is:  f(x,y,z) = x 3 + x 2y3z3 + xy 5z2; 

Â w.r.t. grlex f is:  f(x,y,z) = x 2y3z3 + xy 5z2 + x 3; 

Â w.r.t. grevlex f is:  f(x,y,z) = xy 5z2 + x 2y3z3 + x 3.  
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The Hornerôs Rule 

Â The Hornerôs rule (W.G.Horner 1819) is to recursively evaluate the 
polynomial p(x) = a n x

n + 3 + a 1 x + a 0 as:  

  p(x) = (( 3(an x + a n-1)x+3)x + a 0.  

 It costs n multiplications and n additions, no extra storage.  

Â We evaluate the multivariate polynomial iteratively using the 
graded lexicographic order. It costs n multiplications and n 
additions, and n storage. 

x=(a,b,c)  
x0 

x1 

x2 

x3 

An Example of Taylor Expansion 

Â Suppose x = (x1, x2, x3) and y = (y 1, y2, y3), then  
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An Example of Taylor Expansion (Contôd) 
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20 ops 
Direct:30ops 

Improved Fast Gauss Transform 

Â Multivariate Taylor expansion 

 

Â Multivariate Hornerôs Rule 

 

Â Space subdivision based on k-center algorithm 

 

Â Error bound analysis 
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Space Subdivision Scheme 

Â The space subdivision scheme in the original FGT is 

uniform boxes. The number of boxes grows 

exponentially with the dimensionality.  

Â The desirable space subdivision should adaptively fit the 

density of the points.  

Â The cell should be as compact as possible. 

Â The algorithm is better to be a progressive one, that is 

the current space subdivision is from the previous one. 

Â Based on the above considerations, we model the task 

as k-center problem. 

k-center Algorithm 

Â The k-center problem is defined to seek the ñbestò 
partition of a set of points into clusters (Gonzalez 1985, 
Hochbaum and Shmoys 1985, Feder and Greene 1988). 

 

 

 

Â The k-center problem is NP-hard but there exists a 
simple 2-approximation algorithm.  

Given a set of points and a predefined number k, k-center 
clustering is to find a partition S = S 1 [  S2 [  3 [  Sk that 

minimizes max1 ·  i ·  k radius(Si), where radius(Si) is the radius 

of the smallest disk that covers all points in S i. 

Smallest circles 
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Farthest-Point Algorithm 

Â The farthest-point algorithm (a.k.a. k-center algorithm) 
is a 2-approximation of the optimal solution (Gonzales 
1985). 

Â The total running time is O(kn), n is the number of 
points. It can be reduced to O(n log k) using a slightly 
more complicated algorithm (Feder and Greene 1988). 

A Demo of k-center Algorithm 

k = 4  
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Results of k-center Algorithm 

Â The results of k-center algorithm. 40,000 points are 
divided into 64 clusters in 0.48 sec on a 900MHZ PIII 
PC.  

More Results of k-center Algorithm 

Â The 40,000 points are on the manifolds.  
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Results of k-center Algorithm 

Â The computational complexity of k-center algorithm is 
O(n logk). Points are generated using uniform 
distribution. ( Left) Number of points varies from 1000 to 
40000 for 64 clusters; ( Right) The number of clusters k 
varies from 10 to 500 for 40000 points.  

n log k 
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Improved Fast Gauss Transform Algorithm 

Control series truncation error 

Control far field cutoff error  

Collect the contributions from sources to centers 

Summarize the contributions from centers to targets  
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Complexities 

Â FGT 

Â Expansion and evaluation 

Â Translation 

Â IFGT 

Â Expansion and evaluation; data structures 

 

 

 

 

 

Optimal number of centers 
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Improved Fast Gauss Transform 

Â Multivariate Taylor expansion 

 

Â Multivariate Hornerôs Rule 

 

Â Space subdivision based on k-center algorithm 

 

Â Error bound analysis 

 

 

Error Bound of IFGT 

Â The total error from the series truncation and the cutoff 
outside of the neighborhood of targets is bounded by  

 

 

rx 

rx ry 

Truncation error Cutoff error  

Sources 

Targets 
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Error Bound Analysis 

Â Increase the number of truncation terms p, the error 
bound will decrease. 

Â With the progress of k -center algorithm, the radius of 
the source points rx will decrease, until the error bound 
is less than a given precision. 

Â The error bound first decreases, then increases with 
respect to the cutoff radius ry. 

 

Truncation order p Max radius of cells Cutoff radius 
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Experimental Result 

Â The speedup of the fast Gauss transform in 4, 6, 8, 10 
dimensions (h=1.0).  
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New improvements in the IFGT 

 


