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Why do we need represent
functions in different spaces?

Functions should be efficiently summed up;
Sums of functions should be compressed;
Error bounds should be established;

Functions should be translated and expanded over
different bases;

For computations we need discrete and finite
function representations.

Some functions measured experimentally or
approximated by splines, and there is no explicit
analytical representation in the whole space.

Linear Spaces

ab,ccld

1). a+belf
2). a+b=b+aa+(b+c)=(a+b)+c
3. 30, a+0=a, a+(-a)=a—-a=0;
4). YVaeC, aacell
5). Va,pe C, (apf)a=a(f)a, la=a,

a(a+b)=ca+ab, (a+p)a=aa+ fa.



Linear Operators

Linear Spaces

l \
v e F(Q), vy eFQ) QO cRY

Operator

Linear Operator

/

Alay1 + py2] = aAly1] + pA[yz], o, p e C.

An example of linear operator. Differential Operator.

Representation of Functions and
y e FQ), y e FEQ), QQ <R’

Bases ——— F,eF@Q), F,eFQ"),

y = ZCMFA- Wf= ZCL’F;’-

A[Fa] = D (FIF') ,;, Fa
! i Reexpansion Coefficients

Aly] = A[Zcm} = Zc AlF,] =
- Z ZF|F) Fy = [Z(Fm,,,,c,,},, =D chF =y

FlF b Matrix Representation

of operator A



Function Representation in the Space of

Coefficients
Let F(Q) © C(Q), Q@ < IR?, be a normed space of continous functions with norm

1Pl = maxi®(y)].

Let also {F,(y)} be a complete basis in F((2), so
Dly) = D AFa(y), yeQCRY, Dy),Fauy) € FQ),
=0

absolutely and uniformly converges in 2 < IR, This means that

Ve >0, Jpe), |[Ply)-D*(y)|<e, VyeQ,

Ve >0, 3ple), D M.F.(y)<e VyeQ,

n=p

-1
DP(y) = D AFAY).
=0

Function Representation in the Space of
Coefficients (2)

Expansion coefficients can be stacked in an infinite vector

Let us denote £(€2) a subset of E.” which is an image of F(€2 ). For any A < £f€2 )we request
that there exists one-to-one mapping

D(y) 2 A, Dly) € F(Q), A< &(Q) < ™

CcQ) R




p-Truncated Vectors

-1
VA eR?, IDP(y) = D A,F,(y) € F/(Q) © F(Q).

x=0
F7(€2) 1s dense in F(Q2) :

YO(y)eF(Q), 3p, & (Y)EFP(Q), [|1P(y)-D*(y)| = sup|P(y)-d?(y)| < €.
re

Dense in F(QQ)

F(Q) T A

Matrix Representation of Linear Operators

Let QY < ©and Fis a mapping of F102) to F(©2"). Such mapping can be considered as
action of operator Fon D :

Aby)] = Dy by) € FlQ), By) € FIQ) < F@)

Respectively, operator F generates operator F that maps the space of expansion coefficients
A(0) — &(Q"), which can be considered as representation of the operator in the space of
expansion coefficients:

FA=A A< &(Q), Ac&Q)c AQ).

Inversly, if we introduce any transform of expansion coefficients FA = A which provides
uniform convergence of finction <(y) corresponding to these coefficients in Q' « € then
such transform can be treated as operator * that convert one function from'F(£2) to another.

F(Q) F AQ) | F

—

Representation of a Linear Operator



p-Truncation (Projection) Operator

Pr(piA =A, A €AQ), A e A7(Q).

n A, 10..000
4, 4, 01 ..000
A=| 4, |=4=| 4,, A=l 00 .10 0 A
4, 0 00 ..000
Ay 0 00 ..000
In space F(Q2) :

Prp)[P(y)=P(y), D(y) € F(Q), P(y)ebr(Q),

lim | Dy )-Prp)[PM)]I = 0.
’ Pr(p)

1

A(Q)

Frip)

F@Q) ~

Norm of p-Truncation Operator
(important for error bounds)

Norm:

supyeal|Prip)[P)]|
supyeql| P(y) || -

IPr@) =
Triangle unequality:

T = T=Pr@) | < [Prp)|l < [T + [T=Pr@)|l = 1+ [[T-Prp)|

Ve >0, Jp, |I-Prip)|| <e,
S0

Ve >0, 3p, 1-€<|Prip)| <1+e,



p-Truncated Operator

Let H : F{£2) > F(€2) be an operator, that is represented by infinite matrix

hOU hOl hﬂp—l hﬂp
b A Hip e
H-= ..
hp—l,U hp—l,l hp—l,p—l hp—l,p
hp@ hhl hp—l.p hp}‘

We call operator H*' - F(€2) — F(€). p

trimncafted 1f1t 18 represented by matmnx

oo ho frop-1 0
o i i 0
H® =
;)_1._1.0 /)_1._1.1 ;)_3._1._1«_1 0
0 0 .. 0 0

Norm of p-Truncated Operator
(important for error bounds)

Theorem: Let H : F(Q) — F(Q), such that 0 <|[H | < e, and H®: F(Q) - F(Q) is the
-truncated operator H. Let also p(e) be such that | —¢ < ||Pr(p)| < | + €. Then

H®)
(1 _6)2 < "P’(p)"2 = " "H"”

= IPr)ll* < (L+€)?,

AHN
P THT T

Proof.
A p-truncated operator can be represented in the form

H®) = Pr(p)HPr(p)

{check!)
So the norm of H®) is

IH || = IPA@) IIHITPAE) | = [HIIPrE) 1%
End of Proof.



Translation Operator

Operator 7(t) - F{iQ) - F(Q' ), Q" = BY. € = ¥ is called tramsiation operator
correspondmng to franskition vector L, if

TOMPE)] = Py -1, e y+ted)

y+t

Example of Translation Operator




R|R-reexpansion
Lety x, « €(x,)¢ B €Q.(x,):|y x,|<r and -R.¥ x_ )} bearegular basis
ey Lety  x, +t £2(x,)and

Ry -Xotti= D (RIR,(CRV - X

-0

Coefficients (R|R),, () are called B|R - reexpansion coefficients (regnlar-to-regnlar)
and infinite matrix

(R|R)Lm ’RR:::_Z

)

(RIR)O = | (RIR),, (RR..

\

is called R|R — reexpansion marrix.

Example of R|R-reexpansion

R, (x) = x",

] o m _1
Ryx+f)=(x+H)"=x"+ XM+ L+ EYAGIE S

1 =1
i m 7 m L m N
Z Fxr! = Z i = Z PR I
=0 ! i=f) l =0\ !

(=)
£ I m,
(RIR )., (¢) ( / )

I
|



R|R-translation operator

Translation operator 7it) which is represented in regular basis R,y — x, )% by the
R|R — reexpansion martrixv 18 called R|R-translation operator.

TO[Py)] = dy+ 1)

(RIR)(E) = T,

Why the same operator named
differently?

TH[Ey)] = DPly+t)

The first letter shows The second leFter
the basis for O(y) \f"r\\'ﬂ?‘\(t\/ shows the basis
‘ R for O(y +t)
T (<SS

‘ (SR
(RIS

Needed only to show the expansion basis
(for operator representation)

10



Matrix representation of
R|R-translation operator
Consider P} = D Adu(x.,1Ruly x,).

Py + 10 = (RIRIOP)] = D Au (RIR)ORy - x, )

»=0

Z AXORMY - X, 1)

L2

(X*)Z(R\R);n(t)Rz(y— x,)

=0

B
]
=1

Z (RIR),, ()4, (x4 ) :| 1Y =X.) Coefficients of
n=0 shifted function
Zli’(x*,t)R;(y -x,),

ME%MS

Coefficients of
original function

[l
=1

Aixast) = D RIR)(OA,(x.), A(xa,t) = (RIR)(DA(X.).
»=0

Reexpansion of the same
function over shifted basis

Compact notation:

Dy) = D Au(x )Ry - X,) = A(x.) o R(y - x,),

By +t) = D A OR(Y - X,) = AXut) o RY - X,)

{=0
We have:
Dly) = Py — +t) = Alx,, 1) o R((y — t)x,)
= Afx.,t) o Rly-x, — t).
Also
Ply)= Al Ry-x ) = Alx. + ) = Ry —-x, - t},
50

A, + U = Afx. t) = (RIR)UAX. ).

11



R|R-reexpansion of the

Same

function over shifted basis (2)

Original expansion
Is valid only here!

ly-Xe-tf < 7= r-Jt

/

Since Q,;(x:+t) < Q. (t) !

Example of power series

reexpansion

Rn(x) =x"

. N ~ . N . B .
Blyx ) = D Al X OBy X ) = D An(vL xR,
Pl i)

—'Lk(-'\’42:-'\—1) = (R|R)(x4: —Xa ) _L\(x”,x,).

1 2 ,
X . 1 (x,g*.xa]) (xa'z*-xul)z
AN, ) 0 0
)(va_x*l)

— 2

AN
Asivian) 0 !

0 0 1

ST

AU(x*I:xi)
A1(x41,%;)
Ax(x41,%;)

12



S|S-reexpansion

Lety-x, € Q.(x,) C B, Q.(x.):|y-x,|>r and{S,(y—x,)} be asingular
bagisin C(Q2). Lety — x, +t €0Q.(x,) and

i

Suy —Xe+ 0 = IS, (08 - x,).

1=

Coefficients (8|8, (t) are called SIS — reexpansion coefficients (singular-to-singular) ,
and infinite matrix

(SIS 00 (519,
(S|S)(t) = SIS (SIS,

ig called SIS — reexpanision marrix.

S|S-translation operator

Translation operator 77t) which is represented in singular basis {5,(y — x )} by the
SIS — reexpansion matrix is called S|S-translation operator.

TO[P(y)] =Dy +t)

(SlS)(t) = T(L).

13



S|S and R|R-translation operators
are very similar,

(actually, this is just two representations of
the same translation operator in different domains and bases)

Dly)=Blx.; Sy x)
Dy + 1) = B(x,,t7 -8y x,)

Dly) = E(xht] o Siv—x. -t

Blx.,t) = (S|S)()B/x. = Bix. + t).

But picture is different...

— Original expansion
Is valid only here!

ly-Xe-tf > r = r+it]

Since
Q) (xH) C Q1) !

Also
X, -X«| <7

singular point !

14



S|R-reexpansion

Lety—-x, € Q. (x,) c R?, Q. x.):|y-x,| < and{R.(y-x,)}+bearegular
basis in C(€2,(x.)). Letalso Q, (x, —t) : [y —x,+t| > R > r, and {S,(y—x, +t)} bea
singular basis in C(Q,(X. )), then

S,y —X. = t) = D (SR, (ORI (Y- X, ).

=0

Coefficients (S|R), (t) are called S|R — reexpansion coefficients (singular-to-regular) ,

and infinite matrix

(SIR)gy (SIR)g -
SR = | (SR, SR, -

is called S|R — reexpansion malirix.

Does R|S reexpansion exist?

* Theoretically yes (in some cases, e.g. analytical continuation);

* In practice, since the domain of S-expansion is larger

then the domain of R-expansion, this either

not useful (due to error bounds), or can be avoided in algorithms;
» We will not use R|S-reexpansions in the FMM algorithms.

15



S|R-translation operator

Translation operator /(t) which is represented in singular basis by the S|8  reexprnision
mieitrix 18 called &K -translation operaior if the basis of expansion is changed with the
translation operation from singular <8, 7y — x_ " - toregular < R.(y - x, + t) =

TEIDY T = by =t

S|R-operator has almost the same
properties as S|S and R|R

(t cannot be zero)

Dly) = Blx.) Sy -x,),

Dly+t) = Afx..t) 2 Ry - x,)
Dly) = Z—‘;(x*,t) » Riy—x. — t).

Alxa,t) = (SIR)(t)B(x. ).

16



Picture 1s different...

Original expansion
Is valid only here!
ly-Xe-tf < 7= |t|-r

Since
Q,)(x+) C Q1) !

Also
X, -X«| <7

singular point !

Properties of the translation
operator

O[] = Py + )
u T0Y = I (identity operator). Proof:

I[P ] = Py
st +t) = Aty e 7t = Ato) e Aty Proof

Aty e TUD[PYY] = Py + o+ ty) = T+ 10[Dy)] = Ay + [Py ]
3 (corollary 1): 71ty = T(~t). Proof:
I = 70 = Tit— 1) = 7« Ti—t).
X (corollary 2): 7*(t) = Tit). Proof (use induction):
o) = Tr— DO T = PP = T = 7L,

17



Spectrum of the translation

operator
eigen value N eigen function
TO¥(y)) = A¥(y), vy €R?
Any function of type
va €RY, W(y) = e™, A= e
Check:

TOM(Y)] = Wy +1) = 0" = e™e™ = AF(y).
Relation to differential operator:

) By O- D) T -by) _ . TH-1 e
e v AT o 0 T AL TR

derivative in direction s

Example from previous lectures

iy v =
Plyv.x, | vox

[y — x| < |3 — x4 l R-expansion

(:D(,y:xi) = Zam(‘rnx*JRm (_}’—.1} ,I~
m=l]
1 S

Ap(x,x.) = —(x,—x.)7, m=01 . x

Raly=xa)=(y-x.)", m=0,1,.

ly— x| > x— % l S-expansion

Dly,x, ) = Z b (3,5, S0 (=),

=)
holx, x,) = -x)0% m=01,

Sofly xa) =0y x)" ' m=0.1.

18



In this case we have

by xaf <D

L v “\](f\f.[l
Sy xatf) = f ZJ ne! C A

ofF

‘”1 1 Hbls f[1

m’ 17/3
- 0
So
U 800 O 100+ !
(SR wn(ry = 1A L
ml ot ptptprtet)
f 1 ! r I K
A2 31

Norm of the Translation Operator

Theorem. Let F(Q2) be a set of functions bounded in R¥. Then || 7(t)| = 1.
Proof.

1T = JTOIOI | I9G+ 0] _ eG4 0]
1o I P, e DY)

19



Active and Passive points of view
on translation operator

“*Active” point of view:
Operator transforms
function.

The reference frame
Does not change.

y

“"Passive” point of view:

Operator transforms
the reference frame.

Norms of R|R, S|S, and S|R-
| operators (1)

X,
' t
singular point of ®(y)
D(y) is bounded in Q.
Q' cQ.
Therefore d(y) is bounded in Q', and

[Pl = sup|P(y)| < supl®(y)| = [|D(¥) ]
yeo' yel

Function does not change.

20



Norms of R|R, S|S, and S|R-
operators (2)

From the passive point of view, the translation operator does nothing,
but just changes the reference frame. So if we consider that R|R, SIS,
and S|R do just change of the reference frame PLUS they shrink

the domain, where the function is bounded, then\their norms

do not exceed 1.

Q'O
This is the difference
o SUpyeoy [ PY) between general

IRIRY® | = SR PW 18

supye|D(y)| translation operator

. SUDyeey [P(Y)]

(SIS || = — L - <1, and R|R, S|S, and S‘R

supyea| DY) operators.

SUPyey | D(y
(SR = — )l < 1.

Error of exact R|R, S|S, and S|R-
translation

If

[D(y) - ()l <,
then
[(RRD(Dy) - Py | = [(RFED DY) - Dy <€,
[(SISHE(Py) — PPy = SISO [1Dy) - PP(¥) | < e,
ISR Dy) — PPy | = ISR PF) - PPy <€
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