
CUDA Programming

Many slides adapted from the slides of Hwu & Kirk at UIUC; and NVIDIA CUDA

tutorials

CUDA Software Development
• Is done on the host (CPU)

– programming environment, compilers and libraries

– Profiler, emulator

Source code is on CPU

It can be mixed, with

parts meant for the

CPU and other parts for

the GPU

NVCC separates the CPU

code and passes it to the

system compiler

(Visual studio or gcc)

CPU environment is set

up to call appropriate

GPU libraries

GPU code is compiled to

a GPU assembler

PTX is then compiled to the device

Can also be compiled to a CPU emulator/CPU debug emulator

Extensions to C
• Declspecs

– global, device, shared,

local, constant

• Keywords

– threadIdx, blockIdx

• Intrinsics

– __syncthreads

• Runtime API

– Memory, symbol,

execution management

• Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

__shared__ float region[M];

...

region[threadIdx] = image[i];

__syncthreads()

...

// Allocate GPU memory

void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block

convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs

• Each thread uses IDs to decide
what data to work on

– Block ID: 1D or 2D

– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data

– Image processing

– Solving PDEs on volumes

– …

GPU Memory Allocation /

Release
• cudaMalloc(void ** pointer, size_t nbytes)

• cudaMemset(void * pointer, int value, size_t
count)

• cudaFree(void* pointer)

int n = 1024;

int nbytes = 1024*sizeof(int);

int *a_d = 0;

cudaMalloc((void**)&a_d, nbytes);

cudaMemset(a_d, 0, nbytes);

cudaFree(a_d);

Data Copies

• cudaMemcpy(void *dst, void *src, size_t
nbytes, enum cudaMemcpyKind direction);
– direction specifies locations (host or device) of

src and dst
– Blocks CPU thread: returns after the copy is

complete
– Doesn’t start copying until previous CUDA calls

complete

• enum cudaMemcpyKind
– cudaMemcpyHostToDevice
– cudaMemcpyDeviceToHost
– cudaMemcpyDeviceToDevice

Data Movement Example

Host variables – h

Device variables – d

Allocate and get pointer

on host and device

Copy the data from host

to device (notice the

order of arguments)

From device-to-device

from device-to-host

Free

Cuda Kernels

• Kernels are C functions with some

restrictions

– Cannot access host memory

– Must have void return type

– No variable number of arguments (“varargs”)

– Not recursive

– No static variables

• Function arguments automatically copied

from host to device

Function Qualifiers

• Kernels designated by function qualifier:
__global__

– Function called from host and executed on device
– Must return void

• Other CUDA function qualifiers
__device__

– Function called from device and run on device
– Cannot be called from host code

__host__

– Function called from host and executed on host (default)

• __host__ and __device__ qualifiers can be combined
to generate both CPU and GPU code

CUDA Built-in Device Variables

Calling a kernel function

• kernel<<<dim3 dG, dim3 dB>>>(…)

– Execution Configuration (“<<< >>>”)

– dG - dimension and size of grid in blocks

• Two-dimensional: x and y

• Blocks launched in the grid: dG.x * dG.y

– dB - dimension and size of blocks in threads:

• Three-dimensional: x, y, and z

– Threads per block: dB.x * dB.y * dB.z

• Unspecified dim3 fields initialize to 1

Unique Thread ID

Host synchronization

• All kernel launches are asynchronous

– control returns to CPU immediately

• cudaMemcpy() is synchronous

– control returns to CPU after copy completes

– copy starts after all previous CUDA calls have
completed

• cudaThreadSynchronize()

– blocks until all previous CUDA calls complete

Host Sync example

• // copy data from host to device

cudaMemcpy(a_d, a_h, numBytes,
cudaMemcpyHostToDevice);

• // execute the kernel

inc_gpu<<<ceil(N/(float)blocksize),
blocksize>>>(a_d, N);

// run independent CPU code

run_cpu_stuff();

// copy data from device back to host

cudaMemcpy(a_h, a_d, numBytes,
cudaMemcpyDeviceToHost);

