Precedence Effect

Beamforming

Demo of the Franssen effect

- Demonstrates precedence

Introduction to 3D Audio (capture)

- Directivity of microphone.
- Omni-directional
- Advantages are that microphones capture all sound including that
 of interest
- Directional
- Capture sound from a preferred direction

Beamforming

- Given N microphones combine their signals in a way that some desired result occurs
- Word arises from the use of parabolic reflectors to form pencil "beams" for broadcast and reception

- Alternate word: "spatial filtering"
- Towed array and fixed array sonars

Delay and Sum Beamforming

- If the source location is known, delays relative to the microphone can be obtained
- Signal x at location \mathbf{s} arrives at microphone \mathbf{m}_{i} as

$$
x\left(t-\frac{\left|\mathbf{s}-\mathbf{m}_{i}\right|}{c}\right)
$$

- Signals at microphones $\left|\mathbf{s}-\mathbf{m}_{i}\right|$ can be appropriately delayed and weighted.
- Output signal is

$$
y(k)=\frac{1}{N} \sum_{l=1}^{N} w_{l}^{*} x_{l}\left(k-\Delta_{l}\right)
$$

$$
\Delta_{l}=\left|\mathbf{s}-\mathbf{x}_{l}\right| / c \quad w_{l}=1 /\left|\mathbf{s}-\mathbf{x}_{l}\right|
$$

Behavior of simple beamformer

- Usually source is assumed to be far away.
- Weights are approximately the same in this case
- Signal from source direction adds in phase
- So the signal is amplified N times
- Signals from other directions will add up with random phase and the power will decrease by a factor of $1 / \mathrm{N}$
- Directivity index is a measure of the gain of the array in the look direction (location of the delays) in decibels
- For N microphones $10 \log _{10}$ (N)
- Requires an ability to store the signal (at least for max $\left\{\Delta_{1}\right\}$
- Jargon: "taps" number of samples in time that are stored
- Data independent beamforming:
- Weights are fixed
- Data dependent (adaptive)
- Weights change according to the data
- Simple example:
- Fixed: Delay and sum looking at a particular point (direction)
- Adaptive: Delay and sum looking at a particular moving source

More general beamforming

- Suppose we want to take advantage of the stored data
- Write the beamformer output as

$$
y(k)=\sum_{l=1}^{N} \sum_{m=k-M}^{k} w_{l m}^{*} x_{l}(k-m)
$$

- Can be written as $\mathbf{y}=\mathbf{w}^{\mathrm{H}} \mathbf{x}$
- Take Fourier transform of the weights and the signal

Speech and Audio Processing

Microphone Array Processing
Slides adapted from those of
Marc Moonen/Simon Doclo
Dept. E.E./ESAT, K.U.Leuven
www.esat.kuleuven.ac.be/~moonen/

Introduction

- Each microphone is characterized by a `directivity pattern' which specifies the gain (\& phase shift) that the microphone gives to a signal coming from a certain direction ('angle-of-arrival').
- Directivity pattern is a function of angle-of-arrival and frequency
- Directivity pattern is a (physical) microphone design issue.

270

Introduction

- By weighting/filtering and summing signals from different microphones, a `virtual' directivity pattern may be produced

- This is `spatial filtering’ and `spatial tilter design', based on given microphone characteristics (with correspondences to traditional (spectral) filter design)
- Applications: teleconferencing, hands-free telephony, hearing aids, voicecontrolled systems, ...

Introduction

- An important aspect is that different microphones in a microphone array are in different positions/locations, hence receive different signals
- Example : linear array, with uniform inter-microphone distances, under far-field (plane waveforms) conditions. Each microphone receives the same signal, but with different delays.

- Hence `spatial filter design’ based on microphone characteristics + microphone array configuration.
Often simple assumptions are made, e.g. microphone gain $=1$ for all frequencies and all angles.

Introduction

- Background/history: ideas borrowed from antenna array design/processing for RADAR \& (later) wireless comms.
- Microphone array processing considerably more difficult than antenna array processing:
- narrowband radio signals versus broadband audio signals
- far-field (plane wavefronts) versus near-field (spherical wavefronts)
- pure-delay environment versus multi-path reverberant environment
- Classification:
- fixed beamforming: data-independent, fixed filters $f_{m}[k]$
e.g. delay-and-sum, weighted-sum, filter-and-sum
- adaptive beamforming: data-dependent, adaptive filters $f_{m}[k]$ e.g. LCMV-beamformer,

Beamforming basics

General form: filter-and-sum beamformer

- linear microphone array with M microphones and inter-micr. distance d_{m}
- Microphone gains are assumed to be equal to 1 for all freqs./angles (otherwise, this characteristic is to be included in the steering vector, see next page)
- source $S(\omega)$ at angle θ (far-field, no multipath)
- filters $f_{m}[k]$ with filter length L

$$
F_{m}(\omega)=\sum_{k=0}^{L-1} f_{m}[k] e^{-j k \omega}
$$

Terminology: `Broadside' direction: $\theta=\mathbf{9 0}^{\circ}$
'End-fire’ direction: $\theta=\mathbf{0}^{\mathbf{}}$

Near-field beamforming

- Far-field assumptions not valid for sources close to microphone array
- spherical wavefronts instead of planar waveforms
- include attenuation of signals
- 3 spherical coordinates θ, ϕ, r (=position \mathbf{q}) instead of 1 coordinate θ
- Different steering vector:

$$
\begin{aligned}
& \mathbf{d}(\omega, \theta) \longrightarrow \mathbf{d}(\omega, \mathbf{q})=\left[\begin{array}{lll}
a_{1} e^{-j \omega \tau_{1}(\mathbf{q})} \quad a_{2} e^{-j \omega \tau_{2}(\mathbf{q})} & \ldots & a_{M} e^{-j \omega \tau_{M}(\mathbf{q})}
\end{array}\right]^{T} \\
& a_{m}=\frac{\left\|\mathbf{q}-\mathbf{p}_{r e f}\right\|}{\left\|\mathbf{q}-\mathbf{p}_{m}\right\|} \quad \tau_{m}(\mathbf{q})=\frac{\left\|\mathbf{q}-\mathbf{p}_{r e f}\right\|-\left\|\mathbf{q}-\mathbf{p}_{m}\right\|}{c} f_{s} \\
& \text { with } \mathbf{q} \quad \text { position of source } \\
& \mathbf{p}_{\text {ref }} \text { position of reference microphone } \\
& \mathbf{p}_{m} \text { position of } m^{\text {th }} \text { microphone }
\end{aligned}
$$

Beamforming basics

Data model:

- Microphone signals are delayed versions of $S(\omega)$

$$
\begin{aligned}
& Y_{m}(\omega, \theta)=e^{-j \omega \tau_{m}(\theta)} \cdot S(\omega) \\
& y_{m}[k]=S\left[k-\tau_{m}(\theta)\right] \tau_{m}(\theta)=\frac{d_{m} \cos \theta}{c} f_{s}
\end{aligned}
$$

- Stack all microphone signals in a vector

$$
\mathbf{Y}(\omega, \theta)=\mathbf{d}(\omega, \theta) \cdot S(\omega) \quad \mathbf{d}(\omega, \theta)=\left[\begin{array}{llll}
1 & e^{-j \omega \tau_{2}(\theta)} & \ldots & e^{-j \omega \tau_{M}(\theta)}
\end{array}\right]^{T}
$$

d is `steering vector'

- Output signal $Z(\omega, \theta)$ is

$$
Z(\omega, \theta)=\sum_{m=1}^{M} F_{m}^{*}(\omega) Y_{m}(\omega, \theta)=\mathbf{F}^{H}(\omega) \cdot \mathbf{Y}(\omega, \theta)
$$

Beamforming basics

Data model:

- Microphone signals are corrupted by additive noise

$$
y_{m}[k]=s\left[k-\tau_{m}(\theta)\right]+n_{m}[k]
$$

- Stack all noise signals in a vector

$$
\mathbf{N}(\omega)=\left[\begin{array}{llll}
N_{1}(\omega) & N_{2}(\omega) & \ldots & N_{M}(\omega)
\end{array}\right]^{T}
$$

- Define noise correlation matrix as

$$
\mathbf{\Phi}_{N N}(\omega)=E\left\{\mathbf{N}(\omega) \cdot \mathbf{N}(\omega)^{H}\right\}
$$

- We assume noise field is homogeneous, i.e. diagonal elements of

$$
\boldsymbol{\Phi}_{N N}(\omega)
$$

$$
\Phi_{i i}(\omega)=\Phi_{\text {noise }}(\omega) \quad, \quad \forall i
$$

- Then noise coherence matrix is

$$
\boldsymbol{\Gamma}_{N N}(\omega)=\frac{1}{\phi_{\text {noise }}(\omega)} \cdot \boldsymbol{\Phi}_{N N}(\omega)
$$

Beamforming basics

Definitions:

- Spatial directivity pattern: 'transfer function' for source at angle θ

$$
H(\omega, \theta)=\frac{Z(\omega, \theta)}{S(\omega)}=\sum_{m=1}^{M} F_{m}^{*}(\omega) e^{-j \omega \tau_{m}(\theta)}=\mathbf{F}^{H}(\omega) \cdot \mathbf{d}(\omega, \theta)
$$

- Steering direction $\theta_{\max }=$ angle θ with maximum amplification (for 1 freq.)
- Beamwidth $=$ region around $\theta_{\max }$ with amplification $>-\mathbf{3 d B} \quad$ (for 1 freq.)
- Array Gain = improvement in SNR

$$
G(\omega, \theta)=\frac{S N R_{\text {Output }}}{S N R_{\text {Input }}}=\frac{\left|\mathbf{F}^{H}(\omega) \cdot \mathbf{d}(\omega, \theta)\right|^{2}}{\mathbf{F}^{H}(\omega) \cdot \Gamma_{N N}(\omega) \cdot \mathbf{F}(\omega)}
$$

Beamforming basics

Definitions:

- $\underline{\text { Array Gain }=\text { improvement in SNR }}$

$$
G(\omega, \theta)=\frac{S N R_{\text {Output }}}{S N R_{\text {Input }}}=\frac{\left|\mathbf{F}^{H}(\omega) \cdot \mathbf{d}(\omega, \theta)\right|^{2}}{\mathbf{F}^{H}(\omega) \cdot \Gamma_{N N}(\omega) \cdot \mathbf{F}(\omega)}
$$

- Directivity $=$ array gain for $\theta_{\max }$ and diffuse noise (=coming from all directions)

$$
D I(\omega)=\frac{\left|\mathbf{F}^{H}(\omega) \cdot \mathbf{d}\left(\omega, \theta_{\max }\right)\right|^{2}}{\mathbf{F}^{H}(\omega) \cdot \Gamma_{N N}^{\text {diffuse }}(\omega) \cdot \mathbf{F}(\omega)}
$$

- $\underline{\text { White Noise Gain }}=$ array gain for $\theta_{\max }$ and spatially uncorrelated noise $\left(\Gamma_{N N}=\mathrm{I}\right)$
(e.g. sensor noise)

$$
W N G(\omega)=\frac{\left|\mathbf{F}^{H}(\omega) \cdot \mathbf{d}\left(\omega, \theta_{\max }\right)\right|^{2}}{\mathbf{F}^{H}(\omega) \cdot \mathbf{F}(\omega)} \text { ps: often used as a measure for robustness }
$$

Delay-and-sum beamforming

- Microphone signals are delayed and summed together

Array can be virtually steered to angle ψ

$$
\begin{aligned}
& z[k]=\frac{1}{M} \cdot \sum_{m=1}^{M} y_{m}\left[k+\Delta_{m}\right] \\
& F_{m}(\omega)=\frac{e^{-j \omega \Delta_{m}}}{M} \\
& \Delta_{m}=\frac{d_{m} \cos \psi}{c} f_{s}
\end{aligned}
$$

- Angular selectivity is obtained, based on constructive (for $\theta=\psi$) and destructive (for $\theta \psi$) interference For $\theta=\psi$, this is referred to as a 'matched filter': $\quad \mathbf{F}(\omega)=\frac{\mathbf{d}(\omega, \psi)}{M}$
- For uniform linear array :

$$
d_{m}=(m-1) d \quad \Delta_{m}=(m-1) \Delta
$$

$$
H(\omega, \theta=\psi)=1
$$

- PS: $H(\omega, \theta)=H(\omega,-\theta)$ plain!) (if microphone characteristics are ignored)

Delay-and-sum beamforming

- Spatial directivity pattern $\boldsymbol{H}(\omega, \theta)$ for uniform DS-beamformer

$$
\begin{aligned}
H(\omega, \theta) & =\sum_{m=1}^{M} e^{-j\left(m-1(\omega) \frac{d(\cos \theta-\cos \psi)}{c} f_{s}\right.} \\
& =\frac{e^{-j M \gamma / 2} \sin (M \gamma / 2)}{e^{-j \gamma / 2} \sin (\gamma / 2)} \gamma
\end{aligned}
$$

M=5 microphones
$d=3 \mathrm{~cm}$ inter-microphone distance
$\psi=60^{\circ}$ steering angle
$f_{\mathrm{s}}=16 \mathrm{kHz}$ sampling frequency

- $H(\omega, \theta)$ has sinc-like shape and is frequency-dependent

wavelength $=4 \mathrm{~cm}$

Delay-and-sum beamforming

- For \square an ambiguity, called spatial aliasing, occurs.

This is analogous to time-domain aliasing where now the spatial sampling $(=d)$ is too large.
Aliasing does not occur (for any ψ) if

$$
d \leq \frac{c}{f_{s}}=\frac{c}{2 \cdot f_{\max }}=\frac{\lambda_{\min }}{2}
$$

Delay-and-sum beamforming

- Beamwidth: for a uniform delay-and-sum beamformer

$$
B W \approx c \frac{\sqrt{96(1-v)}}{\omega d M} \sec \psi
$$

hence large dependence on \# microphones, distance (compare p14 \& 15) and frequency (e.g. BW infinitely large at DC)

- Array topologies:
- Uniformly spaced arrays
- Nested (logarithmic) arrays (small d for high ω, large d for small ω)
- Planar / 3D-arrays

Weighted-sum beamforming

and-weight/sum'

- Sensor-dependent complex weight + delay (compare to p. 13)

$$
\begin{aligned}
& Z[k]=\sum_{m=1}^{M} w_{m} \cdot y_{m}\left[k+\Delta_{m}\right] \\
& H(\omega, \theta)=\sum_{m=1}^{M} w_{m} \cdot e^{-j(m-1) \omega \frac{d(\cos \theta-\cos \psi)}{c} f_{s}}
\end{aligned}
$$

- Weights added to allow for better beam shaping
- Design similar to traditional (spectral) filter design

Filter-and-sum beamforming

- Sensor-dependent filters implement frequency-dependent complex weights to obtain a desired response over the whole frequency/angle range of interest

$$
\begin{aligned}
& z[k]=\sum_{m=1}^{M} f_{m}[-k] \otimes y_{m}[k] \\
& H(\omega, \theta)=\sum_{m=1}^{M} F_{m}^{*}(\omega) \cdot e^{-j(m-1) \omega \frac{d \cos \theta}{c} f_{s}}
\end{aligned}
$$

- Design strategies : desired beampattern is $\boldsymbol{P}(\omega, \theta)$
- Non-linear:

$$
\begin{aligned}
& \left.\min _{f_{m}(|k|, n-1 . .1} \int_{\theta_{1}}^{\theta_{2}} \int_{\omega_{1}}^{a_{2}}|H(\omega, \theta)|-\mid P(\omega, \theta)\right)^{2} d \omega d \theta \\
& \min _{f_{m}|l|, n=1 . . M \mid} \int_{\theta_{1}}^{\theta_{2}} \int_{\omega_{1}}^{\sigma_{2}}|H(\omega, \theta)-P(\omega, \theta)|^{2} d \omega d \theta
\end{aligned}
$$

- Quadratic:
- Frequency sampling, i.e. design weights for sampling frequencies ω_{I} and then interpolate :

$$
\min _{F_{m}\left(\omega_{i}\right), m=1 \ldots M} \int_{\theta_{1}}^{\theta_{2}}\left|H\left(\omega_{i}, \theta\right)-P\left(\omega_{i}, \theta\right)\right|^{2} d \theta
$$

Filter-and-sum beamforming

- Example-1: frequency-independent beamforming (continued)

Filter-and-sum beamforming

- Example-2: `superdirective’ beamforming
- Maximize directivity for known (diffuse) noise fields
- Maximum directivity $=M^{2}$ obtained for diffuse noise \& endfire steering ($\theta=0^{\circ}$)

Design: find $F(\omega)$ that maximizes $\quad D I(\omega)=\frac{\mid \mathbf{F}^{H}(\omega) \cdot \mathbf{d}\left(\omega,\left.\theta_{\max }\right|^{2}\right.}{\mathbf{F}^{H}(\omega) \cdot \mathbf{\Gamma}_{N N}^{d / f i s e c}(\omega) \cdot \mathbf{F}(\omega)}$ for given steering angle theta_max

- Optimal solution is

$$
\mathbf{F}(\omega)=\alpha \cdot \boldsymbol{\Gamma}_{N N}^{-1}(\omega) \cdot \mathbf{d}\left(\omega, \theta_{\max }\right)
$$

- This is equivalent to minimization of noise output power, subject to unit response for steering angle (${ }^{* *}$)

$$
\min _{\mathbf{F}(\omega)} \mathbf{F}^{H}(\omega) \cdot \boldsymbol{\Gamma}_{N N}(\omega) \cdot \mathbf{F}(\omega) \text {, s.t. } \mathbf{F}^{H}(\omega) \cdot \mathbf{d}\left(\omega, \theta_{\max }\right)=1
$$

PS: Delay-and-sum beamformer similarly maximizes WNG

$$
\mathbf{F}(\omega)=\alpha \cdot \mathbf{d}\left(\omega, \theta_{\max }\right)
$$

Filter-and-sum beamforming

- Example-2: `superdirective’ beamforming (continued)

Directivity patterns for endfire steering:
Delay-and-sum beamformer ($\mathrm{f}=3000 \mathrm{~Hz}$)
Superdirective beamformer ($\mathrm{f}=3000 \mathrm{~Hz}$)

Superdirective beamformer has highest DI, but very poor WNG hence problems with robustness (e.g. sensor noise) !

LCMV-beamforming

- Adaptive filter-and-sum structure:
- Aim is to minimize noise output power, while maintaining a chosen frequency response in a given look direction (and/or other linear constraints, see below)
- This corresponds to operation of a superdirective array (see (**) p25), but now noise field is unknown
- Implemented as adaptive filter (e.g. constrained LMS algorithm)
- Notation:

$$
\begin{aligned}
& \mathbf{y}[k]=\left[\begin{array}{llll}
\mathbf{y}_{1}^{T}[k] & \mathbf{y}_{2}^{T}[k] & \ldots & \mathbf{y}_{M}^{T}[k]
\end{array}\right]^{T} \\
& \mathbf{f}=\left[\begin{array}{llll}
\mathbf{f}_{1}^{T} & \mathbf{f}_{2}^{T} & \ldots & \mathbf{f}_{M}^{T}
\end{array}\right]^{T} \\
& \mathbf{y}_{m}[k]=\left[\begin{array}{llll}
y_{m}[k] & y_{m}[k-1] & \ldots & y_{m}[k-L+1]
\end{array}\right]^{T} \quad \mathbf{f}_{m}=\left[\begin{array}{llll}
f_{m}[0] & f_{m}[1] & \ldots & f_{m}[L-1]
\end{array}\right]^{T}
\end{aligned}
$$

LCMV-beamforming

LCMV = Linearly Constrained Minimum Variance

- f designed to minimize variance of output $z[k]$:

$$
\min _{\mathbf{f}} E\left\{z^{2}[k]\right\}=\min _{\mathbf{f}} \mathbf{f}^{T} \cdot \mathbf{R}_{y y}[k] \cdot \mathbf{f}
$$

- to avoid desired signal distortion/cancellation, add linear constraints:

$$
\mathbf{C}^{T} \cdot \mathbf{f}=\mathbf{b} \text {, with } \mathbf{C} \in \mathfrak{R}^{M L \times J}, \mathbf{b} \in \mathfrak{R}^{J}
$$

- if noise and speech are uncorrelated, constrained output power minimization corresponds to constrained noise power minimization
- Type of constraints:
- Frequency response in look-direction. Ex: $\sum_{m=1}^{M} F_{m}(z)=1$ (for broadside)
- Point, line and derivative constraints
(=L constraints)
- Solution is (obtained using Lagrange-multipliers, etc..):

$$
\left.\mathbf{f}_{o p t}=\mathbf{R}_{y y l}^{-1} k\right] \cdot \mathbf{C} \cdot\left(\mathbf{C}^{T} \cdot \mathbf{R}_{y y}^{-1}[k] \cdot \mathbf{C}\right)^{-1} \mathbf{b}
$$

