
Precedence Effect

Beamforming



Demo of the Franssen effect
• Demonstrates precedence



Introduction to 3D Audio (capture)
• Directivity of microphone.

– Omni-directional
– Advantages are that microphones

capture all sound including that
of interest

– Directional
– Capture sound from a preferred direction



Beamforming
• Given N microphones combine their signals in a way that 

some desired result occurs
• Word arises from the use of 

parabolic reflectors to form
pencil “beams” for broadcast
and reception

• Alternate word: “spatial filtering”
• Towed array and fixed array 

sonars



Delay and Sum Beamforming
• If the source location is known, delays relative to the 

microphone can be obtained
• Signal x at location s arrives at microphone mi as

• Signals at microphones 
can be appropriately 
delayed and weighted.

• Output signal is 

y(k) =
1

N

NX
l=1

w∗l xl(k −∆l)

∆l = |s − xl|/c wl = 1/|s − xl|

x
³
t− |s−mi|

c

´
|s −mi|



Behavior of simple beamformer
• Usually source is assumed to be far away. 

– Weights are approximately the same in this case
• Signal from source direction adds in phase

– So the signal is amplified N times
• Signals from other directions will add up with random 

phase and the power will decrease by a factor of 1/N
• Directivity index is a measure of the gain of the array in 

the look direction (location of the delays) in decibels
– For N microphones 10 log10 (N)

• Requires an ability to store the signal (at least for max 
{∆l}

• Jargon: “taps” number of samples in time that are stored



• Data independent beamforming:
– Weights are fixed

• Data dependent (adaptive)
– Weights change according to the data

• Simple example:
– Fixed: Delay and sum looking at a particular point (direction)
– Adaptive: Delay and sum looking at a particular moving source



More general beamforming
• Suppose we want to take advantage of the stored data
• Write the beamformer output as

• Can be written as y=wH x
• Take Fourier transform of the weights and the signal

y(k) =
NX
l=1

kX
m=k−M

w∗lmxl(k −m)



Speech and Audio Processing 

Microphone Array Processing
Slides adapted from those of 
Marc Moonen/Simon Doclo

Dept. E.E./ESAT, K.U.Leuven
www.esat.kuleuven.ac.be/~moonen/



Introduction
• Each microphone is characterized by a `directivity pattern’ which 

specifies the gain (& phase shift) that the
microphone gives to a signal coming from 
a certain direction  (`angle-of-arrival’).  

• Directivity pattern is a function of 
angle-of-arrival and frequency

• Directivity pattern is a (physical) 
microphone design issue.
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Introduction
• By weighting/filtering and summing signals from different microphones, a 

`virtual’ directivity pattern may be produced

• This is `spatial filtering’ and `spatial filter design’, based on given 
microphone characteristics (with correspondences to traditional (spectral) 
filter design)

• Applications: teleconferencing, hands-free telephony, hearing aids, voice-
controlled systems, …
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Introduction

• An important aspect is that different microphones in a microphone array 
are in different positions/locations, hence receive different  signals

• Example : linear array, with uniform inter-microphone distances, under 
far-field (plane waveforms) 
conditions. Each microphone 
receives the same signal, but 
with different delays. 

• Hence `spatial filter design’ based on microphone characteristics + 
microphone array configuration.
Often simple assumptions are made, e.g. microphone gain = 1 for all 
frequencies and all angles.
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Introduction
• Background/history: ideas borrowed from antenna array 

design/processing for RADAR & (later) wireless comms.

• Microphone array processing considerably more difficult than 
antenna array processing: 
– narrowband radio signals versus broadband audio signals
– far-field (plane wavefronts)  versus near-field (spherical wavefronts)
– pure-delay environment  versus multi-path reverberant environment

• Classification:
– fixed beamforming: data-independent, fixed filters fm[k]

e.g. delay-and-sum, weighted-sum, filter-and-sum
– adaptive beamforming: data-dependent, adaptive filters fm[k]

e.g. LCMV-beamformer, 



Beamforming basics
General form: filter-and-sum beamformer

– linear microphone array with M microphones and inter-micr. distance dm
– Microphone gains are assumed to be equal to 1 for all freqs./angles

(otherwise, this characteristic is to be included in the steering vector, see next page) 
– source S(ω) at angle θ (far-field, no multipath)
– filters fm[k] with filter length L

Terminology:  `Broadside’ direction: θ = 90o  `End-fire’ direction: θ = 0o
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• Far-field assumptions not valid for sources close to microphone 
array
– spherical wavefronts instead of planar waveforms
– include attenuation of signals
– 3 spherical coordinates θ,φ,r (=position q) instead of 1 coordinate θ

• Different steering vector:

Near-field beamforming
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Beamforming basics
Data model:
• Microphone signals are delayed versions of S(ω) 

• Stack all microphone signals in a vector  

d is `steering vector’

• Output signal Z(ω,θ) is
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Beamforming basics
Data model:
• Microphone signals are corrupted by additive noise

• Stack all noise signals in a vector  

• Define noise correlation matrix as

• We assume noise field is homogeneous, i.e. diagonal elements of                are

• Then noise coherence matrix is 
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Beamforming basics
Definitions:
• Spatial directivity pattern: `transfer function’ for  source at angle θ

• Steering direction θmax = angle θ with maximum amplification (for 1 freq.)

• Beamwidth = region around θmax with amplification > -3dB      (for 1 freq.)

• Array Gain = improvement in SNR
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Beamforming basics
Definitions:
• Array Gain = improvement in SNR

• Directivity = array gain for θmax and diffuse noise (=coming from all directions) 

• White Noise Gain = array gain for θmax and spatially uncorrelated noise (ΓNN = Ι)
(e.g. sensor noise) 
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• Microphone signals are delayed and summed together
Array can be virtually steered to angle ψ

• Angular selectivity is obtained, based on constructive 
(for θ =ψ) and destructive (for θ ψ) interference
For θ =ψ, this is referred to as a `matched filter’ : 

• For uniform linear array :

• PS: (explain!) (if microphone characteristics are ignored)

Delay-and-sum beamforming
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• Spatial directivity pattern H(ω,θ) for uniform DS-beamformer

• H(ω,θ) has sinc-like shape and is frequency-dependent

Delay-and-sum beamforming
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• For                          an ambiguity, called spatial aliasing, occurs.

This is analogous to time-domain aliasing where now the spatial 
sampling (=d) is too large.                    
Aliasing does not occur (for any ψ) if 

Delay-and-sum beamforming
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Delay-and-sum beamforming
• Beamwidth: for a uniform delay-and-sum beamformer

hence large dependence on # microphones, distance (compare p14 &  15)  
and frequency (e.g. BW infinitely large at DC)

• Array topologies:
– Uniformly spaced arrays
– Nested (logarithmic) arrays (small d for high ω, large d for small ω)
– Planar / 3D-arrays

with e.g. ν=         (-3 dB) 
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Weighted-sum beamforming `delay-
and-weight/sum’

• Sensor-dependent complex weight + delay (compare to p. 13)

• Weights added to allow for better beam shaping
• Design similar to traditional 

(spectral) filter design
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• Sensor-dependent filters implement frequency-dependent complex weights 
to obtain a desired response over the whole frequency/angle range of interest

• Design strategies : desired beampattern is P(ω,θ)
– Non-linear:
– Quadratic:

– Frequency sampling, i.e. design weights for sampling frequencies ωI and 
then interpolate :

Filter-and-sum beamforming
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Filter-and-sum beamforming
• Example-1: frequency-independent beamforming (continued)

M=8
Logarithmic array
L=50
ψ=90°
fs=8 kHz
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Filter-and-sum beamforming

• Example-2: `superdirective’ beamforming
– Maximize directivity for known (diffuse) noise fields
– Maximum directivity =M 2 obtained for diffuse noise & endfire steering (θ =0o)

Design: find F(ω) that maximizes
for given steering angle theta_max

– Optimal solution is

– This is equivalent to minimization of noise output power, subject to unit 
response for steering angle (**)

PS: Delay-and-sum beamformer similarly maximizes WNG
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• Example-2: `superdirective’ beamforming (continued)

Directivity patterns for endfire steering:

Superdirective beamformer has highest DI, but very poor WNG
hence problems with robustness (e.g. sensor noise) !

Filter-and-sum beamforming
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• Adaptive filter-and-sum structure:
– Aim is to minimize noise output power, while maintaining a chosen frequency 

response in a given look direction (and/or other linear constraints, see below)
– This corresponds to operation of a superdirective array (see (**) p25),     but now 

noise field is unknown
– Implemented as adaptive filter (e.g. constrained LMS algorithm)
– Notation:

LCMV-beamforming
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LCMV = Linearly Constrained Minimum Variance
– f designed to minimize variance of output z[k] :

– to avoid desired signal distortion/cancellation, add linear constraints:

– if noise and speech are uncorrelated,  constrained output power 
minimization corresponds to constrained noise power minimization 

– Type of constraints:
• Frequency response in look-direction.       Ex: (for broadside)

• Point, line and derivative constraints (=L constraints)

– Solution is (obtained using Lagrange-multipliers, etc..): 

LCMV-beamforming
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