Cortical Representation

CMSC 828D / Spring 2006
L ecture 24

(some dlides are adapted from
Dr. S. A. Shamma, University of Maryland)



Cochlear Processing

* Recap of Lecture 9

* Cochlea performs frequency analysis

— Along the basilar membrane, different
frequencies resonate at different points

* Result Isthe auditory spectrogram



Early Auditory Stage
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Central Auditory Stage

* Recorded response of neurons in the brain
— Auditory cortex of ferrets

o Selective response to particular patternsin
auditory spectrogram

— It 1s hypothesized that these neurons pick up
“features’ used In sound recognition



Decomposition Basis

e Look at auditory spectrogram

« Groups of frequencies
sweeping up or down
— Characterized by:
— Spacing in frequency
— Rate of frequency change

Auditory Spectrogram




Decomposition Basis

« Sound rippleisasound that has a group of
frequencies
— A given interfrequency spacing (called “scale”
and measured in cycles per octave, CPO)

— A given rate of frequency increase/decrease
(called “rate’” and measured in Hz)



Scale-only Decomposition
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STRF

 Particular neurons respond best to some
combination of rate and scale

o Spectro-temporal response field
— Plot neuron response versus scale and time
— Rate then Is determined from time

« Experimentally collected evidence



Examples of Different STRF Shapes
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STRF to Scae-Rate Plot
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Cortical Decomposition

e Differently-tuned neurons at each frequency

* Neurons are sensitive to:
— Scalerange: 0.125 to 8 CPO
— Raterange: 2to 16 Hz
— Upward and downward moving ripples

e QOutput of aneuron is high when the input
matches the tuning
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Cortical Decomposition

e Spectrogram Is frequency versustime

e Filter with various scale-rate combinations
— Complex filter (details in the paper)

e Obtain afour-dimensional representation
— Frequency, time, scale, and rate (and phase)
— Called “cortical decomposition”

— Simulates the sound representation used by the
brain



Sample Scale-Rate Plots

e (here summed over all frequencies)
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Usefulness

e Linear decomposition
— Invertible
— Predictable

o Used recently In:
— Prediction of neural response
— Evaluation of speech intelligibility
— Separation of pitch and timbre



|Nnversion

 Modify sound in cortical representation

* Compose the auditory spectrogram back
— Linear, easy process
— Think of It as an inverse Fourier transform
e Compose the signal back
— Non-linear, hard process
— |terative solution (see paper)



Fourier Transform Analogy

e Basisfunctions F(t): sin(Nwt) and cos(Nwt)
e Fourier transform:

— Coefficient for F(t) shows the correlation (a
measure of similarity) between the signal and F(t)

e |nverse Fourier transform:

— Assemble the signal as a sum of all F(t) weighted
by their appropriate coefficients



Fourier Transform Analogy

e Same with cortical representation, but...
— 2-D input signal (instead of 1-D Iin FT)

— Basisfunctions are of 2 parameters (rate and
scale) (instead of one N in FT)

 Now can make some changes in cortical
representation
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Application Example

Separation of pitch and timbre
Selective modifications of either

Comparison of spectrums for the original and the pitch-shifted speech
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Application Example

e Separable in cortical representation
— Can change one without changing the other
— Can interpolate timbre

— Can combine pitch of one person and timbre of
another one

— Or pitch of aperson and atimbre of a musical
Instrument
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