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Answer: 
a) Refer to slides 7 and 8 of lecture 22. 
For image flow caused by rigid motion of the scene or camera the motion field in the image can 
be written as  

where the terms are as described in class 
Observing the expression for the translational portion of the flow, we see that it can be written as  
The focus of expansion or contraction is the point (x0,y0) from which the flow vectors due to the 

translational component of a rigid motion appear to originate. 
 
b) For this particular motion we have  

c) The pattern of flow vectors for this motion is 
 radially outwards from the focus of expansion. 
d) The aperture constraint refers to the fact that when flow is 
computed for a point that lies along a linear feature, it is not 
possible to determine the exact location of the corresponding point in the second image. Thus, it 
is only possible to determine the flow that is normal to the linear feature.  
The linear constraint on flow is derived by assuming that the brightness of a pixel is constant. 
This equation restricts the flow to lie along a line in velocity space. Again, it is a manifestation of 
the problem that it is possible to only determine the normal component of the flow. 
Problem 2: 
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where , ,  is the focus of expansion (FOE) or focus of contraction (FOC).
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Images taken via cameras/CCDs often have noise. In addition, an image may have many features 
that would lead to edges. The operation of taking derivatives via finite differences leads to an 
increase in the noisiness of the image. Using a smoothing filter such as a Gaussian, blurs edges, 
thereby suppresses the local edges and retaining only the prominent ones.  
'
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To perform the former operation we would have to apply the filter to the image via a discrete 
convolution, and then apply the discrete Laplacian operator to the image. However, we can 
precompute the action of the Laplacian on the Gaussian, and apply only one filter to the image, 
thereby improving the efficiency. 
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To show that Laplacian of the Gaussian can be written as G1*I-G2*I,  we can write  

 
This equation can be approximated by the difference of two Gaussians with appropriately chosen 
standard deviations 
See http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/OWENS/LECT6/node2.html for a 
discussion. 
 
(d) Why is the difference of Gaussians implementation even more efficient than the (∇2G)*I 
Laplacian of Gaussian implementation? 

Gaussians are separable and can be implemented as two 1-D  kernels … etc. 
Problem 3. 
(a) The general camera matrix is  ]C- | I R[ K  P

~=  whereC
~

 is the position of the camera center 
in scene coordinates. Here the scene coordinates are the camera coordinates for the first camera 
position. T is the translation of the camera center from its original position to its second position 

in scene coordinates. Therefore, T = CC’ = C
~

. 
For pure translation, the rotation R is the identity matrix. Therefore the camera matrix in this 
case is P’ = K [I | -T].  
 (b) Fundamental matrix as function of epipole. 
One form of the fundamental matrix is += PP' ][e'  F X . For this problem, we have  
 P = K [I | 0] and P’ = K [I | -T]. First, we calculate  
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We have. P = [K | 0], therefore 
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Going back to the expression of F, this expression is reduced to X][e'  F =  

(c) The epipolar line of x is x][e'  l' X= . We want to show that x is on l’, i.e that  

xT l’=0.   This is the case because 0x][e' x X
T = , a property resulting from the fact that X][e' is 

skew symmetric (Fundamental matrix, slide 10). 
 
(d) If the camera translation is parallel to the x-axis, then e’ = (1, 0, 0) T. Then X][e'  F = becomes 
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Problem 4: 
(a) As stated above, the general camera matrix is  ]C- | I R[ K  P

~=  whereC
~

 is the position of the 
camera center in scene coordinates. Here the scene coordinates are the camera coordinates for 
the first camera position. T is the translation of the camera center from its original position to its 

second position in scene coordinates. Therefore, T = CC’ = C
~

. Using T from now on, and the 
fact that here K = I, we have for the second camera position RT]- |[R  T]- | I R[  P' == . The 
column –RT gives the components of the initial camera center C in the new camera coordinate 

system. The rotation matrix is 
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, therefore the coordinates of the initial camera 

center C in the new camera coordinate system is 
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(b) We write
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 for the first camera, and 
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 for the second camera. The conditions for zero disparity 

are x = x’, and y = y’, i.e. u/w = u’/w’ and v/w = v’/w’.  

The first condition can be written 
zx

zx

cTsTcZsX
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= and the second condition is 

 

zx cTsTcZsX

Y

Z

Y

−++−
= . The first condition leads to 

0)'()'(22 =+−−−+ zxzx TTtZTtTXZX , where t’=c/s (t’ is the cotangent of the angle of 

rotation).  
The second condition leads to 0))1(( =−+−+− zx cTsTZcsXY , another quadratic equation 

 
(c) The first condition is 0)'()'(22 =+−−−+ zxzx TTtZTtTXZX . It is a 3D surface. Its 

intersection with any horizontal plane Y = k is a circle, because the equation of the intersection is 
of the form (X-a)2 + (Y-b) 2 = R2, where a and b are the coordinates of the center of the circle and 
R is its radius. Therefore the surface is a cylinder of revolution.  
 
 
The second condition leads to 0))1(( =−+−+− zx cTsTZcsXY , i.e. either Y=0, or 

0=−−++− ZcTsTcZsX zx , which are the equations of two planes, the horizontal plane and a 

vertical plane. Therefore, the locus of points with zero disparity is defined by two surface 
intersections: the intersection of the cylinder by the horizontal plane, and the intersection of the 
cylinder by the vertical plane. The first intersection defines a circle in the horizontal plane of the 
camera centers. The second intersection defines two vertical lines. Therefore, the locus of points 
with zero disparity is defined by the intersection of the cylinder and the horizontal plane, or by 
the intersection of the cylinder and a vertical plane.  
The equation of the circle is 0)'()'(22 =+−−−+ zxzx TTtZTtTXZX . The coordinates of the 

center of the circle are  
(Tx - t’ Tz)/2 and (t’ Tx + Tz)/2. The circle passes through a specific point if the coordinates of 
that point satisfy its equation. One verifies that the circle passes through the camera center C (of 
coordinates (0,0)), the camera center C’ (of coordinates (Tx , 0, Tz)), and also the point of 
intersection of the optical axes, (0, t’ Tx + Tz). It also passes through the intersection of the x-axes 
of the camera coordinate systems  
(Tx -t’ Tz, 0).  
The vertical plane 0)1( =−+−+− zx cTsTZcsX  can be verified to also pass through the 

intersection of the x-axes of the camera coordinate systems (Tx - t’ Tz, 0).  
 Therefore, that point belongs to the vertical line that is the intersection of the vertical plane with 
the cylinder. However, that line is not visible, because it is behind both image planes (it is the 
intersection of the planes defined by the x and y axes of each camera). 
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To find the second intersection between the circle and the line 0)1( =−+−+− zx cTsTZcsX  in 

the plane Y=0, we do a change of coordinates to place the origin of the scene at the first 
intersection in order to simplify the equation of the line. The old coordinates (X, Z) in relation to 
the new ones (X’, Z’) are 
X=X’+ Tx - t’ Tz , Z=Z’. The equation of the circle 
becomes 0)'(')'(''' 22 =+−−++ zxzx TTtZTtTXZX  and the equation of the line becomes 

')1(' ZcsX −= . Plugging this value of X’ into the equation of the circle, we find 
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Looking at simple configurations of cameras, we infer that this point also happens to be the 
intersection between a line perpendicular to the translation vector at its midpoint and the circle 
(this line also goes through the center of the circle). To verify this, we write the equation of such 
a line: 02/)( 22 =+−+ zxzx TTZTXT  and we find that indeed our second intersection belongs to 

this line. Since we know it belongs to the circle it is at the intersection of this line and the circle.  
To check that this intersection is visible from both cameras, we would have to check that for 
each camera it is on the side of the image plane that does not contain the image center. 

 
Problem 6: 
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To determine the stationary points we need to find locations where  .   
This is most conveniently done using the summation convention. This yields 

We are looking for nontrivial solutions. So we want 
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Putting this in matrix notation  
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Using the fact that A is symmetric 

( )( ) ( )( )
( )

( ) ( ) ( )( )
( )

2

2

2

2

l l ki ij j i ij kj i ij j l kli ij j

k l l l l

l l kj j i ik i ij j k

l l

x x A x x A x A x xx A xf

x x x x x

x x A x x A x A x x

x x

δ δ δ+ − ∂ ∂= = ∂ ∂  

+ −
=

x



CMSD828D FINAL EXAM December 11, 2000 

t

 
=  

 

tx Ax
Ax x

x x
 

Comparing with eigenvalue relation we see that at the stationary point of f(x) we satisfy the 
eigenvalue relation with the eigenvalues given by the value of f(x) and x the eigenvector. 
'
$-'=.0/&' *' 7"1,/0$1' /)*/' .&/".1%' /)&'U*54&03)'J"$/0&1/' $7' *'@'G5'@'-*/.0E'*6' 30+&1'*'

+&,/$.'+C''S&%/'5$".',$2&'"%013'/)&'%J"*.&'-*/.0E''
3 3

3 3

 
=  

  
A C;%&' /)&' V*/4*G'

'&./'7"1,/0$1'/$'#4$/'/)&'1&3*/0+&'$7'/)&'U*54&03)'J"$/0&1/6''W7:+>6''()&.&'+'0%'/)&'@X'
+&,/$.'YE�6'E�Z['(0/)',$-#$1&1/'+*4"&%'01'/)&'.*13&'W8CB'≤'E�6'E�'≤'8CB':\$"'-*5'(*1/'
/$'*+$02'/)&'.&30$1'*.$"12':969>'G5',)$$%013'5$".'#$01/%']"20,0$"%45>C'
 
A possible implementation that uses a global variable to pass the matrix is shown below. 
 
function lam=lambda(x) 
global aglobal 
A=aglobal; 
x1=A*x; 
lam=x'*x1; 
if(lam>=1.e-15) 
   lam=lam/(x'*x); 
else 
   lam=1.; 
end 
lam=-lam; 
 
 
This function can be called with a script such as global aglobal 
x1=-1.5:0.03:1.5; 
imax=max(size(x1)); 
x2=-1.5:0.03:1.5; 
b=sqrt(3) 
a=[3 b; b 3]; 
aglobal=a; 
lam=zeros(imax); 
for i=1:imax 
   x=x1(i); 
   for j=1:imax 
      y=x2(j); 
      v=[x,y]'; 
      lam(i,j)=lambda(v); 
   end 
end 
mesh(x1,x2,lam); 
(note: This surface is actually the negative of what I asked but it is acceptable) 
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Adding the line 
fminsearch('lambda',[0.4 0.1]') 

 to the script above does the job. The result I got is 
Ans = 
 
    0.1553 
    0.1553 
Obtaining the result via the Matlab built in function eig, I obtain. 
[v,d]=eig(a) 
 
v = 
    0.7071    0.7071 
   -0.7071    0.7071 
d = 
 
    1.2679         0 
         0    4.7321 

The eigenvalue obtained is the same, but the eigenvector is different. In general, since 
eigenvectors are not unique.  This is because, if x is an eigenvector, so is sx, for s any nonzero 
scalar. (you can observe this in the figure in 6b – both the max and the min lie on a ridge). 


