Segmentation and Grouping

How and what do we see?

Fundamental Problems

- ' Focus of attention, or grouping
 - What subsets of pixels do we consider as possible objects?
 - All connected subsets?
- ' Representation
 - ' How do we model the shape, color and appearance of natural objects?
- ' Matching
 - ' How do we compare these models against images?

Polyhedral objects

- ' Representation
 - Graphs of vertices connected by links corresponding to the corners and edges of the polyhedron, respectively.
 - ' Metric information associated with the vertices of the graph
- ' Matching
 - ' Pose estimation
- ' Segmentation
 - ' How do we find the projections of the corners of the polyhedron in the image

Combinatorics of polyhedra recognition

- ' 4 point perspective solution
 - ' unique solution for 6 pose parameters
 - ' computational complexity of n^4m^4
- 1 3 point perspective solution
 - ' generally two solutions per triangle pair, but sometimes more
 - ' reduced complexity of n^3m^3

Reducing the combinatorics of pose estimation

- Problem #1: we are looking for an object in an image but the image does not contain the object
 - only discover this after comparing all n⁴ quadruples of image features against all m⁴ quadruples of object features.
- ' How can we reduce the number of matches?
 - ' consider only quadruples of object features that are
 - ' simultaneously visible extensive preprocessing
 - ' diameter 2 subgraphs of the object graph
 - but in some images no such subgraphs might be visible

Reducing the combinatorics of pose estimation

- ' Reducing the number of matches
 - ' consider only quadruples of image features that
 - are connected by edges
 - ' are "close" to one another
- Problem # 2: Image contains instances of MANY objects with occlusions
- ' Generally, try to group the image junctions into sets that are probably from a single object, and then only construct quadruples from within a single group

Image segmentation

- Definition 1: Partition the image into connected subsets that maximize some "uniformity" criteria.
- Definition 2: Identify possibly overlapping but maximal connected subsets that satisfy some uniformity criterion.

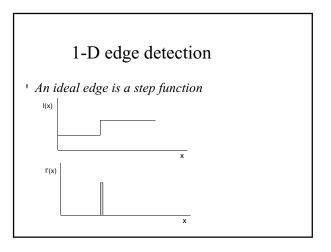
Approaches to segmentation

- ' Edge detection
 - ¹ Biological systems are sensitive to color and texture edges
 - Detect and identify collections of edges that "outline" an object or are likely to be part of the outline of a single object
- ' Region detection
 - ' Identify (possibly multiple) partitions of the image into uniform regions

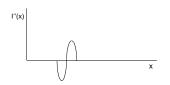
Edge detection

- ' Gradient based edge detection
- ' Edge detection by function fitting
- ' Second derivative edge detectors
- ' Edge grouping

Example images



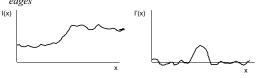
1-D edge detection



- ' The first derivative of I(x) has a **peak** at the edge
- The second derivative of I(x) has a zero crossing at the edge

1-D edge detection

- More realistically, image edges are blurred and the regions that meet at those edges have noise or variations in intensity.
 - blur high first derivatives near edges
 - ' noise high first derivatives within regions that meet at edges



Edge detection in 2-D

- Let f(x,y) be the image intensity function. It has derivatives in all directions
 - the gradient is a vector whose first component is the direction in which the first derivative is highest, and whose second component is the magnitude of the first derivative in that direction.

' direction =

Edge detection in 2-D

- With a digital image, the partial derivatives are replaced by finite differences:
 - $\Delta_{x} f = f(x, y) f(x-1, y)$
 - $\Delta_x f = f(x, y) f(x, y-1)$
- ' Alternatives are:
 - $\Delta_{2x} f = f(x+1,y) f(x-1,y)$
 - $\Delta_{2y} f = f(x, y+1) f(x, y-1)$
- ' Robert's gradient
- $\Delta_{+}f = f(x+1,y+1) f(x,y)$ $\Delta_{+}f = f(x,y+1) - f(x+1,y)$
- 1 0

Edge detection in 2-D

- ¹ How do we combine the directional derivatives to compute the gradient magnitude?
 - ' use the root mean square (RMS) as in the continuous case
 - take the maximum absolute value of the directional derivatives

Combining smoothing and differentiation - fixed scale

- ' Local operators like the Roberts give high responses to any intensity variation
 - ' local surface texture
- If the picture is first smoothed by an averaging process, then these local variations are removed and what remains are the "prominent" edges
- ' smoothing is blurring, and details are removed
- | Example $f_{2x2}(x,y) = 1/4[f(x,y) + f(x+1,y) + f(x,y+1) + f(x+1,y+1)]$

Smoothing - basic problems

- What function should be used to smooth or average the image before differentiation?
 - box filters or uniform smoothing
 - ' easy to compute
 - ' for large smoothing neighborhoods assigns too much weight to points far from an edge
 - ' Gaussian, or exponential, smoothing

$$(1/2\pi\sigma)e^{-(x^2+y^2)/2\sigma^2}$$

Smoothing and convolution

The convolution of two functions, f(x) and g(x) is defined as

$$h(x) = \int_{0}^{\infty} g(x')f(x - x')dx' = g(x) * f(x)$$

When the functions f and g are discrete and when g is nonzero only over a finite range [-n,n] then this integral is replaced by the following summation:

$$h(i) = \sum_{i=1}^{n} g(j)f(i+j)$$

Smoothing and convolution

• These integrals and summations extend simply to functions of two variables:

$$h(i,j) = f(i,j) * g = \sum_{k=-n}^{n} \sum_{l=-n}^{n} g(k,l) f(i+k,j+l)$$

- Convolution computes the weighted sum of the gray levels in each nxn neighborhood of the image, f, using the matrix of weights g.
- ' Convolution is a so-called linear operator because ' g*(af₁ + bf₂) = a(g*f₁) + b(g*f₂)

Gaussian smoothing

- ' Advantages of Gaussian filtering
 - ' rotationally symmetric (for large filters)
 - ' filter weights decrease monotonically from central peak, giving most weight to central pixels
 - ' Simple and intuitive relationship between size of σ and size of objects whose edges will be detected in image.
 - ' The gaussian is separable:

$$e^{\frac{-(x^2+y^2)}{2\sigma^2}} = e^{\frac{-x^2}{2\sigma^2}} * e^{\frac{-y^2}{2\sigma^2}}$$

Advantage of seperability

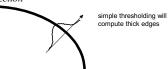
- ' First convolve the image with a one dimensional horizontal filter
- Then convolve the result of the first convolution with a one dimensional vertical filter
- For a kxk Gaussian filter, 2D convolution requires k² operations per pixel
- But using the separable filters, we reduce this to 2k operations per pixel.

Advantages of Gaussians

- ' Convolution of a Gaussian with itself is another Gaussian
 - ' so we can first smooth an image with a small Gaussian
 - then, we convolve that smoothed image with another small Gaussian and the result is equivalent to smoother the original image with a larger Gaussian.
 - If we smooth an image with a Gaussian having sd σ twice, then we get the same result as smoothing the image with a Gaussian having standard deviation (2σ)^{1/2}

Combining smoothing and differentiation - fixed scale

- ' Non-maxima supression Retain a point as an edge point if:
 - ' its gradient magnitude is higher than a threshold
 - ' its gradient magnitude is a local maxima in the gradient direction



Summary of basic edge detection steps

- Smooth the image to reduce the effects of local intensity variations
 - ' choice of smoothing operator practically important
- Differentiate the smoothed image using a digital gradient operator that assigns a magnitude and direction of the gradient at each pixel
- Threshold the gradient magnitude to eliminate low contrast edges

Summary of basic edge detection steps

- ' Apply a nonmaxima suppression step to thin the edges to single pixel wide edges
 - ' the smoothing will produce an image in which the contrast at an edge is spread out in the neighborhood of the edge
 - ' thresholding operation will produce thick edges

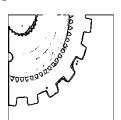
The scale-space problem

- Usually, any single choice of σ does not produce a good edge map
 - a large σ will produce edges form only the largest objects, and they will not accurately delineate the object because the smoothing reduces shape detail
 - a small σ will produce many edges and very jagged boundaries of many objects.
- Scale-space approaches
 - detect edges at a range of scales $[\sigma_1, \sigma_2]$
 - ' combine the resulting edge maps
 - ¹ trace edges detected using large o down through scale space to obtain more accurate spatial localization.

Examples

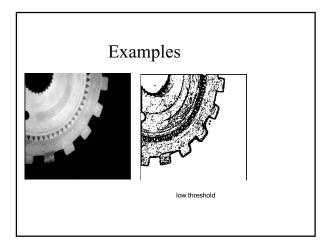
3x3 Gradient magnitude

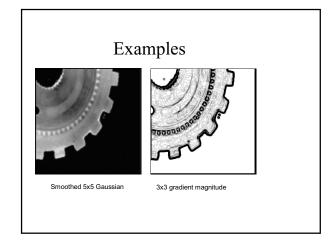
Examples

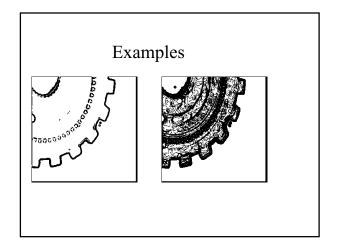


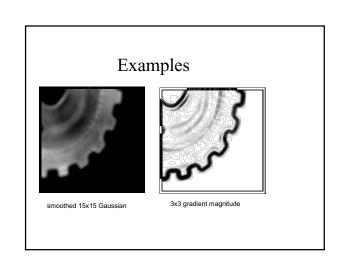
High threshold

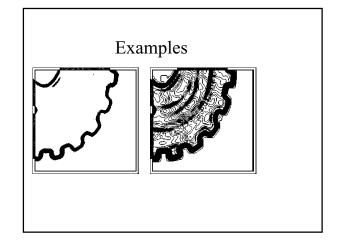
Medium threshold











Laplacian edge detectors

- ' Directional second derivative in direction of gradient has a zero crossing at gradient maxima
- ' Can "approximate" directional second derivative with Laplacian $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

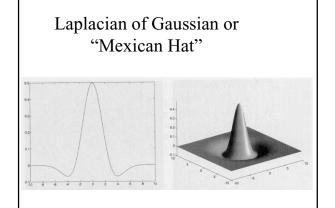
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- ' Its digital approximation is
 - $\nabla^{2} f(x,y) = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] 4 f(x,y)$

$$= [f(x+1,y) - f(x,y)] - [f(x,y) - f(x-1,y)] + [f(x,y+1) - f(x,y)] - [f(x,y) - f(x,y-1)]$$

Laplacian edge detectors

- ¹ Laplacians are also combined with smoothing for edge detectors
 - Take the Laplacian of a Gaussian smoothed image called the Mexican Hat operator or DoG (Difference of Gaussians)
 - ' Locate the zero-crossing of the operator ' these are pixels whose DoG is positive and which have neighbor's whose DoG is negative or zero
 - Usually, measure the gradient or directional first derivatives at these points to eliminate low contrast edges.



Laplacian of Gaussian

Zero crossings

Laplacian of Gaussian

13 x 13 Mexican hat

zero crossings

Edge linking and following

- ' Group edge pixels into chains and chains into large pieces of object boundary.
 - ' can use the shapes of long edge chains in recognition
 - ' Curvature high curvature points are possible
 - ' Junctions where individual chains meet

Grouping chains

- 1 How do we know if two chains should be combined into a single, longer chain
 - Edge detector leaves gaps in edges due to low contrast, complex image structure where more than two regions meet
- ' More generally, can we optimally partition the set of chains into groups that maximize some "reasonable" criteria
 - ' Good continuation across gaps
 - ' Closur
 - ' Resistance to noise (small, irrelevant chains)

Segmentation II- Region analysis

- Partition images into elementary regions
 - · Pixels
 - ' Connected components of constant brightness/color
- ' Build region adjacency graph for regions
 - ' Edge weights reflect similarity of regions that meet at that edge
- Reduce the graph to a smaller number of regions
 - ' Merging eliminate weak edges
 - ' Cutting partition graph into subgraphs

Region merging

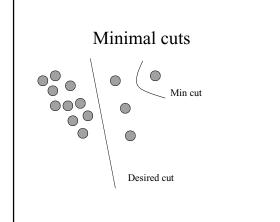
- ' Best first region merging
 - ' Eliminate the weakest edge in the graph
 - ' Compute new properties of merged region
 - ' Average color
 - ' Texture statistics
 - ' Update edge weights for adjacent regions
- ' For a graph with n regions initially, will create n-1 new regions

Graph splitting - cuts

Let A,B be a partition of the nodes in a weighted graph G.

$$cut(A,B) = \sum_{u \in A, v \in B} w(u,v)$$

- Optimal bi-partitioning of a graph is the one that minimizes this cut
- ' Efficient algorithms for finding minimal cuts
- But minimum cuts favor small sets of isolated nodes



Normalized cuts

' Compute the cut cost as a fraction of the total edge connections to all the nodes in the graph:

$$Ncut(A,B) = \frac{cut(A,B)}{assoc(A,V)} + \frac{cut(A,B)}{assoc(B,V)}$$

$$assoc(A, V) = \sum_{u \in A, t \in V} cut(u, t)$$

Normalized cuts

- ' Finding the cut which minimizes Ncut is an NP complete problem
- But there is a way to obtain an approximate solution by constructing a matrix from the graph and finding the eigenvectors and eigenvalues of that matrix
- ' See Shi and Malik, IEEE T-PAMI, August 2000.

