
Segmentation and Grouping
How and what do we see?

Fundamental Problems

' Focus of attention, or grouping
' What subsets of pixels do we consider as possible 

objects?
' All connected subsets?

' Representation
' How do we model the shape, color and appearance 

of natural objects?

' Matching
' How do we compare these models against images?

Polyhedral objects

' Representation
' Graphs of vertices connected by links corresponding 

to the corners and edges of the polyhedron, 
respectively.
' Metric information associated with the vertices of the 

graph

' Matching
' Pose estimation

' Segmentation
' How do we find the projections of the corners of the 

polyhedron in the image

Combinatorics of polyhedra 
recognition

' 4 - point perspective solution
' unique solution for 6 pose parameters

' computational complexity of n4m4

' 3  - point perspective solution
' generally two solutions per triangle pair, 

but sometimes more

' reduced complexity of n3m3

Reducing the combinatorics of 
pose estimation

' Problem # 1:  we are looking for an object in 
an image but the image does not contain the 
object
' only discover this after comparing all n4 quadruples 

of image features against all m4 quadruples of object 
features.

' How can we reduce the number of matches?
' consider only quadruples of object features that are

' simultaneously visible - extensive preprocessing
' diameter 2 subgraphs of the object graph

' but in some images no such subgraphs might be visible



Reducing the combinatorics of 
pose estimation

' Reducing the number of matches
' consider only quadruples of image features that

' are connected by edges
' are “close” to one another

' Problem # 2:  Image contains instances of 
MANY objects with occlusions

' Generally, try to group the image junctions into 
sets that are probably from a single object, and 
then only construct quadruples from within a 
single group

Image segmentation

' Definition 1:  Partition the image into 
connected subsets that maximize some 
“uniformity” criteria.

' Definition 2: Identify possibly 
overlapping but maximal connected 
subsets that satisfy some uniformity 
criterion.

Approaches to segmentation

' Edge detection
' Biological systems are sensitive to color and 

texture edges
' Detect and identify collections of edges that 

“outline” an object or are likely to be part of 
the outline of a single object

' Region detection
' Identify (possibly multiple) partitions of the 

image into uniform regions

Edge detection

' Gradient based edge detection

' Edge detection by function fitting

' Second derivative edge detectors

' Edge grouping

Example 
images 1-D edge detection

' An ideal edge is a step function
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1-D edge detection

' The first derivative of I(x) has a peak at the edge
' The second derivative of I(x) has a zero crossing at 

the edge
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1-D edge detection

' More realistically, image edges are blurred and 
the regions that meet at those edges have noise or 
variations in intensity.
' blur - high first derivatives near edges
' noise - high first derivatives within regions that meet at 

edges
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Edge detection in 2-D
' Let f(x,y) be the image intensity function.  It has 

derivatives in all directions
' the gradient is a vector whose first component is the 

direction in which the first derivative is highest, and 
whose second component is the magnitude of the first 
derivative in that direction.

' If f is continuous and differentiable, then its 
gradient can be determined from the directional 
derivatives in any two orthogonal directions 
magnitude =
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Edge detection in 2-D

' With a digital image, the partial derivatives 
are replaced by finite differences:
' ∆xf = f(x,y) - f(x-1, y)

' ∆yf = f(x,y) - f(x, y-1)

' Alternatives are:
' ∆2xf = f(x+1,y) - f(x-1,y)

' ∆2yf = f(x,y+1) - f(x,y-1)

' Robert’s gradient
' ∆+f = f(x+1,y+1) - f(x,y)

' ∆-f = f(x,y+1) - f(x+1, y)
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Edge detection in 2-D

' How do we combine the directional derivatives to 
compute the gradient magnitude?
' use the root mean square (RMS) as in the continuous 

case

' take the maximum absolute value of the directional 
derivatives

Combining smoothing and 
differentiation - fixed scale

' Local operators like the Roberts give high 
responses to any intensity variation
' local surface texture 

' If the picture is first smoothed by an averaging 
process, then these local variations are removed 
and what remains are the “prominent” edges
' smoothing is blurring, and details are removed

' Example f2x2(x,y) = 1/4[f(x,y) + f(x+1,y) + f(x,y+1) + f(x+1,y+1)]



Smoothing - basic problems
' What function should be used to smooth 

or average the image before 
differentiation?
' box filters or uniform smoothing

' easy to compute

' for large smoothing neighborhoods assigns too 
much weight to points far from an edge

' Gaussian, or exponential, smoothing 

(1/2π σ )e-(x2 + y2 )/2σ
2

Smoothing and convolution

' The convolution of two functions, f(x) and 
g(x) is defined as

' When the functions f and g are discrete 
and when g is nonzero only over a finite 
range [-n,n] then this integral is replaced 
by the following summation:

h(x) = g(x' ) f (x − x' )dx'
−∞

∞

∫ = g(x) ∗ f (x)

h(i) = g( j) f (i + j)
j =− n

n
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Smoothing and convolution
' These integrals and summations extend simply to 

functions of two variables:

' Convolution computes the weighted sum of the gray 
levels in each nxn neighborhood of the image, f, using 
the matrix of weights g.

' Convolution is a so-called linear operator because
' g*(af1 + bf2) = a(g*f1) + b(g*f2)

h(i, j) = f (i, j)∗g = g(k, l) f (i + k, j + l)
l =− n

n
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Gaussian smoothing
' Advantages of Gaussian filtering

' rotationally symmetric (for large filters)
' filter weights decrease monotonically from 

central peak, giving most weight to central 
pixels

' Simple and intuitive relationship between 
size of σ and size of objects whose edges will 
be detected in image.

' The gaussian is separable:

e
−(x2 +y2 )

2σ 2 = e
− x2

2σ 2 ∗ e
− y2

2σ 2

Advantage of seperability

' First convolve the image with a one 
dimensional horizontal filter

' Then convolve the result of the first convolution 
with a one dimensional vertical filter

' For a kxk Gaussian filter, 2D convolution 
requires k2 operations per pixel

' But using the separable filters, we reduce this 
to 2k operations per pixel.

Advantages of Gaussians

' Convolution of a Gaussian with itself is another 
Gaussian
' so we can first smooth an image with a small 

Gaussian
' then, we convolve that smoothed image with another 

small Gaussian and the result is equivalent to 
smoother the original image with a larger Gaussian.

' If we smooth an image with a Gaussian having sd σ
twice, then we get the same result as smoothing the 
image with a  Gaussian having standard deviation   
(2σ)1/2



Combining smoothing and 
differentiation - fixed scale
' Non-maxima supression - Retain a point as an 

edge point if:
' its gradient magnitude is higher than a threshold
' its gradient magnitude is a local maxima in the 

gradient direction

simple thresholding will
compute thick edges

Summary of basic edge 
detection steps

' Smooth the image to reduce the effects of local 
intensity variations
' choice of smoothing operator practically important

' Differentiate the smoothed image using a digital 
gradient operator that assigns a magnitude and 
direction of the gradient at each pixel

' Threshold the gradient magnitude to eliminate low 
contrast edges

Summary of basic edge 
detection steps

' Apply a nonmaxima suppression step to 
thin the edges to single pixel wide edges
' the smoothing will produce an image in 

which the contrast at an edge is spread out 
in the neighborhood of the edge

' thresholding operation will produce thick 
edges

The scale-space problem
' Usually, any single choice of σ does not produce a good 

edge map
' a large σ will produce edges form only the largest objects, and 

they will not accurately delineate the object because the 
smoothing reduces shape detail

' a small σ will produce many edges and very jagged boundaries of 
many objects.

' Scale-space approaches
' detect edges at a range of scales [σ1, σ2]
' combine the resulting edge maps

' trace edges detected using large σ down through scale space to obtain 
more accurate spatial localization.

Examples

Gear image 3x3 Gradient magnitude

Examples

High threshold
Medium threshold



Examples

low threshold

Examples

Smoothed 5x5 Gaussian 3x3 gradient magnitude

Examples Examples

smoothed 15x15 Gaussian 3x3 gradient magnitude

Examples Laplacian edge detectors
' Directional second derivative in direction of 

gradient has a zero crossing at gradient
maxima

' Can “approximate” directional second 
derivative with Laplacian

' Its digital approximation is
' ∇2f(x,y) = [f(x+1,y) + f(x-1,y) + f(x,y+1) + 

f(x,y-1)] - 4 f(x,y)
=   [f(x+1,y) - f(x,y)] - [f(x,y) - f(x-

1,y)] + [f(x,y+1)-f(x,y)] - [f(x,y) - f(x,y-1)]

0   1   0
1   -4  1
0   1   0

2

2

2

2

yx
ff

∂
∂+∂

∂



Laplacian edge detectors

' Laplacians are also combined with smoothing 
for edge detectors
' Take the Laplacian of a Gaussian smoothed image -

called the Mexican Hat operator or DoG
(Difference of Gaussians)

' Locate the zero-crossing of the operator
' these are pixels whose DoG is positive and which have 

neighbor’s whose DoG is negative or zero

' Usually, measure the gradient or directional first 
derivatives at these points to eliminate low contrast 
edges.

Laplacian of Gaussian or 
“Mexican Hat”

Laplacian of Gaussian

5x5 Mexican Hat - Laplacian of
Gaussian

Zero crossings

Laplacian of Gaussian

13 x 13 Mexican hat zero crossings

Edge linking and following

' Group edge pixels into chains and chains 
into large pieces of object boundary.
' can use the shapes of long edge chains in 

recognition
' Curvature – high curvature points are possible 

corners

' Junctions – where individual chains meet

Grouping chains
' How do we know if two chains should be 

combined into a single, longer chain
' Edge detector leaves gaps in edges due to low 

contrast, complex image structure where more than 
two regions meet

' More generally, can we optimally partition the 
set of chains into groups that maximize some 
“reasonable” criteria
' Good continuation across gaps
' Closure
' Resistance to noise (small, irrelevant chains)



Segmentation II- Region 
analysis

' Partition images into elementary regions
' Pixels
' Connected components of constant brightness/color

' Build region adjacency graph for regions
' Edge weights reflect similarity of regions that meet 

at that edge

' Reduce the graph to a smaller number of 
regions 
' Merging – eliminate weak edges
' Cutting – partition graph into subgraphs

Region merging

' Best first region merging
' Eliminate the weakest edge in the graph

' Compute new properties of merged region
' Average color

' Texture statistics

' Update edge weights for adjacent regions

' For a graph with n regions initially, will 
create n-1 new regions

Graph splitting - cuts

' Let A,B be a partition of the nodes in a 
weighted graph G. 

' Optimal bi-partitioning of a graph is the one 
that minimizes this cut
' Efficient algorithms for finding minimal cuts

' But minimum cuts favor small sets of isolated 
nodes
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Minimal cuts

Min cut

Desired cut

Normalized cuts

' Compute the cut cost as a fraction of the 
total edge connections to all the nodes in 
the graph:
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Normalized cuts

' Finding the cut which minimizes Ncut is an NP 
complete problem

' But there is a way to obtain an approximate 
solution by constructing a matrix from the 
graph and finding the eigenvectors and 
eigenvalues of that matrix

' See Shi and Malik, IEEE T-PAMI, August 2000.



Examples


