Segmentation and Grouping

How and what do we see?

Fundamental Problems

' Focus of attention, or grouping
' What subsets of pixels do we consider as possible
objects?
' All connected subsets?
' Representation

' How do we model the shape, color and appearance
of natural objects?

' Matching

' How do we compare these models against images?

Polyhedral objects

' Representation
' Graphs of vertices connected by links corresponding
to the corners and edges of the polyhedron,
respectively.
' Metric information associated with the vertices of the
graph
' Matching
' Pose estimation
' Segmentation

' How do we find the projections of the corners of the
polyhedron in the image

Combinatorics of polyhedra
recognition

' 4 - point perspective solution
' unique solution for 6 pose parameters
' computational complexity of n*m?*

' 3 - point perspective solution

' generally two solutions per triangle pair,
but sometimes more

' reduced complexity of n’m?

Reducing the combinatorics of
pose estimation

' Problem # 1: we are looking for an object in
an image but the image does not contain the
object
' only discover this after comparing all n* quadruples
of image features against all m* quadruples of object
features.
' How can we reduce the number of matches?
' consider only quadruples of object features that are
' simultaneously visible - extensive preprocessing
' diameter 2 subgraphs of the object graph

' but in some images no such subgraphs might be visible




Reducing the combinatorics of
pose estimation

' Reducing the number of matches
' consider only quadruples of image features that
' are connected by edges
' are “close” to one another
' Problem # 2: Image contains instances of
MANY objects with occlusions

' Generally, try to group the image junctions into
sets that are probably from a single object, and
then only construct quadruples from within a
single group

Image segmentation

' Definition 1: Partition the image into
connected subsets that maximize some
“uniformity” criteria.

' Definition 2: Identify possibly
overlapping but maximal connected
subsets that satisfy some uniformity
criterion.

Approaches to segmentation

' Edge detection

' Biological systems are sensitive to color and
texture edges
' Detect and identify collections of edges that
“outline” an object or are likely to be part of
the outline of a single object
' Region detection

' Identify (possibly multiple) partitions of the
image into uniform regions

Edge detection

' Gradient based edge detection
' Edge detection by function fitting
' Second derivative edge detectors

' Edge grouping

Example
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1-D edge detection

' An ideal edge is a step function
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1-D edge detection

1"(x)

' The first derivative of I(x) has a peak at the edge

' The second derivative of 1(x) has a zero crossing at
the edge

1-D edge detection

' More realistically, image edges are blurred and
the regions that meet at those edges have noise or
variations in intensity.

' blur - high first derivatives near edges

' noise - high first derivatives within regions that meet at
edges
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Edge detection in 2-D

' Let f{x,y) be the image intensity function. It has
derivatives in all directions
' the gradient is a vector whose first component is the
direction in which the first derivative is highest, and
whose second component is the magnitude of the first
derivative in that direction.
' Iff'is continuous and differentiable, then its
gradient can be determined from the directional
derivatives in any two orthogonal directions

magnitude = [(%)M%)Z]“
Y,
' direction = tan"(aAy )
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Edge detection in 2-D

' With a digital image, the partial derivatives
are replaced by finite differences:
" ASf=fxy) - f(x-1, )
" ASf=fxy) - fx, y-1)
' Alternatives are:
VA =St LY) - fix-1y)
VA =Syt - fxey-1)

' Robert’s gradient o o
VA= fatLy+D) - fy)
CAS= Syl -fetly) T 0

Edge detection in 2-D

' How do we combine the directional derivatives to
compute the gradient magnitude?
' use the root mean square (RMS) as in the continuous
case

' take the maximum absolute value of the directional
derivatives

Combining smoothing and
differentiation - fixed scale

' Local operators like the Roberts give high
responses to any intensity variation
' local surface texture
' Ifthe picture is first smoothed by an averaging
process, then these local variations are removed
and what remains are the “prominent” edges

' smoothing is blurring, and details are removed

" Example f,,(6cy) = Valfs.y) + foct1y) + foey+1) + e+ Ly+D)]




Smoothing - basic problems

' What function should be used to smooth
or average the image before
differentiation?

' box filters or uniform smoothing
' easy to compute

' for large smoothing neighborhoods assigns too
much weight to points far from an edge

' Gaussian, or exponential, smoothing
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Smoothing and convolution

' The convolution of two functions, f(x) and
g(x) is defined as

=3

h(x)= [g(x)f(x = )x' = g(x) % /(x)

' When the functions f and g are discrete
and when g is nonzero only over a finite

range [-n,n] then this integral is replaced
by the following summation. f
n 9
h(i) = 2.8+ j)

J=n

Smoothing and convolution

' These integrals and summations extend simply to
functions of two variables:

Wi )= fljyg= Y D ghDfG+kj+])

k=—nl=—n

' Convolution computes the weighted sum of the gray
levels in each nxn neighborhood of the image, f, using
the matrix of weights g.

' Convolution is a so-called linear operator because

' g¥(af, + bfy) = a(@f) + b))

Gaussian smoothing

' Advantages of Gaussian filtering
' rotationally symmetric (for large filters)

' filter weights decrease monotonically from
central peak, giving most weight to central
pixels

' Simple and intuitive relationship between
size of G and size of objects whose edges will
be detected in image.

' The gaussian is separable:
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Advantage of seperability

' First convolve the image with a one
dimensional horizontal filter

' Then convolve the result of the first convolution
with a one dimensional vertical filter

' For a kxk Gaussian filter, 2D convolution
requires k? operations per pixel

' But using the separable filters, we reduce this
to 2k operations per pixel.

Advantages of Gaussians

' Convolution of a Gaussian with itself is another
Gaussian
' so we can first smooth an image with a small
Gaussian

then, we convolve that smoothed image with another
small Gaussian and the result is equivalent to
smoother the original image with a larger Gaussian.

If we smooth an image with a Gaussian having sd ¢
twice, then we get the same result as smoothing the
image with a Gaussian having standard deviation
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Combining smoothing and
differentiation - fixed scale

' Non-maxima supression - Retain a point as an
edge point if:
' its gradient magnitude is higher than a threshold
' its gradient magnitude is a local maxima in the
gradient direction

simple thresholding will
compute thick edges

Summary of basic edge

detection steps

Smooth the image to reduce the effects of local
intensity variations

' choice of smoothing operator practically important

Differentiate the smoothed image using a digital
gradient operator that assigns a magnitude and
direction of the gradient at each pixel

Threshold the gradient magnitude to eliminate low
contrast edges

Summary of basic edge
detection steps

' Apply a nonmaxima suppression step to
thin the edges to single pixel wide edges
' the smoothing will produce an image in
which the contrast at an edge is spread out
in the neighborhood of the edge

' thresholding operation will produce thick
edges

The scale-space problem

' Usually, any single choice of 6 does not produce a good
edge map
' a large & will produce edges form only the largest objects, and
they will not accurately delineate the object because the
smoothing reduces shape detail

' a small & will produce many edges and very jagged boundaries of
many objects.
' Scale-space approaches
' detect edges at a range of scales [G,, G,]
' combine the resulting edge maps

' trace edges detected using large & down through scale space to obtain
more accurate spatial localization.

Examples

Gear image 3x3 Gradient magnitude
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) ; i
i -

Medium threshold
High threshold edium fhresho




Examples

low threshold

Examples

Smoothed 5x5 Gaussian 3x3 gradient magnitude

Examples
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3x3 gradient magnitude

smoothed 15x15 Gaussian
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Laplacian edge detectors

' Directional second derivative in direction of
gradient has a zero crossing at gradient
maxima

' Can “approximate” directional second
derivative with Laplacian

9 9
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' Its digital approximation is
' Vi) = [fetLy) + fix-1y) + fley+l) +
Sey-1)] - 4 flx.y)

= [fix+1Ly) - fx )] - [ftxy) - fix-
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Laplacian edge detectors

' Laplacians are also combined with smoothing
for edge detectors
' Take the Laplacian of a Gaussian smoothed image -
called the Mexican Hat operator or DoG
(Difference of Gaussians)
' Locate the zero-crossing of the operator
' these are pixels whose DoG is positive and which have
neighbor’s whose DoG is negative or zero
' Usually, measure the gradient or directional first
derivatives at these points to eliminate low contrast
edges.

Laplacian of Gaussian or
“Mexican Hat”

Laplacian of Gaussian

5x5 Mexican Hat - Laplacian of Zero crossings
Gaussian

Laplacian of Gaussian

13 x 13 Mexican hat zero crossings

Edge linking and following

' Group edge pixels into chains and chains
into large pieces of object boundary.
' can use the shapes of long edge chains in
recognition

' Curvature — high curvature points are possible
corners

' Junctions — where individual chains meet

Grouping chains

' How do we know if two chains should be
combined into a single, longer chain
' Edge detector leaves gaps in edges due to low
contrast, complex image structure where more than
two regions meet
' More generally, can we optimally partition the
set of chains into groups that maximize some
“reasonable” criteria
' Good continuation across gaps
' Closure
' Resistance to noise (small, irrelevant chains)




Segmentation I1- Region
analysis

Partition images into elementary regions
' Pixels

' Connected components of constant brightness/color

Build region adjacency graph for regions

' Edge weights reflect similarity of regions that meet
at that edge

Reduce the graph to a smaller number of
regions

' Merging — eliminate weak edges

' Cutting — partition graph into subgraphs

Region merging

' Best first region merging
' Eliminate the weakest edge in the graph
' Compute new properties of merged region
' Average color
' Texture statistics
' Update edge weights for adjacent regions
' For a graph with n regions initially, will
create n-1 new regions

Graph splitting - cuts

Let A,B be a partition of the nodes in a
weighted graph G.

cut(A,B) = ZW(u, V)

ue A,ve B
Optimal bi-partitioning of a graph is the one
that minimizes this cut

' Efficient algorithms for finding minimal cuts
But minimum cuts favor small sets of isolated
nodes

Minimal cuts

o o
OO © © k Min cut

©)
O% o @
@ (@)
Desired cut

Normalized cuts

' Compute the cut cost as a fraction of the
total edge connections to all the nodes in
the graph:

cut(A4,B) + cut(A4,B)

Ncut(A4,B) =
assoc(A4,V) assoc(B,V)

assoc(A,V) = ZCut(u,t)

ue A,teV’

Normalized cuts

' Finding the cut which minimizes Ncut is an NP
complete problem

' But there is a way to obtain an approximate
solution by constructing a matrix from the
graph and finding the eigenvectors and
eigenvalues of that matrix

' See Shi and Malik, IEEE T-PAMI, August 2000.







