
CS 223B: Introduction to Computer Vision

Carlo Tomasi | Stanford University

Matlab and Images

Matlab is a simple and useful high-level language for matrix manipulation. Since images

are matrices of numbers, many vision algorithms are naturally implemented in Matlab. It

is often convenient to use Matlab even for programs for which this language is not the

ideal choice in terms of data structures and constructs. In fact, Matlab is an interpreted

language, which makes program development very easy, and includes extensive tools for dis-

playing matrices and functions, printing them into several di�erent formats like Postscript,

debugging, and creating graphical user interfaces. In addition, the Matlab package pro-

vides a huge amount of prede�ned functions, from linear algebra to PDE solvers to image

processing and much more. The majority of these functions are available asMatlab source

code, which can be read by typing type f to the Matlab prompt, where f is the desired

function.

This note is a quick primer for Matlab version 5. This version of Matlab di�ers from

previous ones most importantly because of the introduction of multidimensional arrays and

record-type data structures. By far the best way to learn about the various features of

Matlab is to run the program by typing matlab5. At the prompt, type helpdesk, which

starts Netscape and initializes it with the top-level Matlab documentation page. Under

MATLAB topics, click on \Getting started" and read on. It is a good idea to keep

Netscape running while working with Matlab, so you have an online manual handy.

In the following, we develop a sample program for reading images, thereby introducing

you to Matlab by example. Because of the simplicity of the basic Matlab constructs,

playing with an example is an e�ective way to learn the language. It is a good idea to read

these notes in front of a terminal, so you can try out the examples.

1 Images

It is useful to see images as functions I(x) from Rm to Rn. For instance, with m = 2 and

n = 1 we have a regular black-and-white image, while color images have m = 2 and n = 3.

Thus, for these images, the vector x is two-dimensional and represents image position. For

each value of x, a color image has three values that identify the color of the image at that

point, so for a �xed x the quantity I(x) is a vector with three components, say, the red,

1



green, and blue components of the desired color. A color image sequence is a function from

R3 to R3; the only di�erence with respect to a single color image is the presence of a third

component in x, which denotes time.

Of course, for digital images, these functions are represented by discrete values, and

become functions that are typically from integers to integers. For instance, a color frame

grabber may output an array of 480 rows by 640 columns of three-byte pixels, so the color

values are in [0 255]3. The pixel at position (120; 215) may contain, say, color (35; 201; 96),

which represents a bright, bluish green.

As soon as we start working on images, however, they become functions from integers

to reals. For instance, if we average two images, the result is not an integer image any

more, since for instance (105 + 110)=2 = 107:5. For values, Matlab makes no distinction

between integers and reals: numbers are numbers1, and are represented as double-precision


oating-point numbers. For subscripts (our x), on the other hand, Matlab wants positive

integers. We stress that subscripts must be positive integers. If you are used to C, this is a

novelty, since in C a subscript of zero is ok, but for Matlab it is not. This convention is

consistent with standard conventions in linear algebra, where the �rst entry of a matrix A

is a11, not a00.

How should we represent an image? A color image sequence, as we saw, is a function from

N3 to R3 (here, N represents natural numbers), but this does not by itself determine how

it should be stored and represented. For instance, to store a 10-frame color image sequence

where each image has 480 rows and 640 columns with three real-valued color bands we could

use

� ten 480� 640 arrays, where each entry contains a 3D vector;

� one 480� 640� 10 array, where each entry contains a 3D vector;

� thirty 480 � 640 arrays, each entry corresponding to one color band (red, green, or

blue) for each pixel of each frame;

� one 480� 640� 10� 3 array, each entry corresponding to one color band (red, green,

or blue) for each pixel of each frame.

For generality and simplicity, we use the last convention, where all subscripts, both in

the domain (x; y; t) and in the range (red, green, blue) are treated uniformly. The user must

know what the subscripts mean, and how many are needed.

1.1 Variables and Arrays

InMatlab, with this convention, a 480�640 color image with all zero entries can be created

by the command (here and elsewhere, '>>' is the Matlab interpreter prompt)

>> image = zeros(480, 640, 3);

1Internally, however, Matlab is smart about the distinction between reals and integers.

2



If you terminate an instruction with a semicolon the instruction is executed, but the result

is not displayed. Omitting the semicolon causes the result to be displayed. When calling a

function that returns an image, it is important to type the semicolon to avoid hundreds of

thousands of numbers to scroll on your screen2. A sequence with ten color images, all zero,

is created as follows:

>> sequence = zeros(480, 640, 10, 3);

Generally, Matlab variables need not be initialized. The command

>> a(2, 3) = 4

a =

0 0 0

0 0 4

>>

creates the smallest possible array for which a(2, 3) makes sense, puts the number 4 in the

proper place, and �lls the rest with zeros. If we then type

>> a(4, 2) = 1

a =

0 0 0

0 0 4

0 0 0

0 1 0

>>

the array a is resized so that a(4, 2) addresses a valid location. Every time an array

is resized, however, the space for it is reallocated, causing a call to the operating system

through the C function realloc. This dynamic allocation takes time, so for large arrays

it is a good idea to preallocate the array by a call to the builtin function zeros as in the

examples above.

The variable sequence de�ned above is rather large, because it refers to 480�640�10�

3 = 9; 216; 000 double-precision 
oating point numbers, for a total of about 74 MBytes of

storage. To obtain 9,216,000 bytes instead, we can use the conversion function uint8 (8-bit

unsigned-integer:

sequence = uint8(zeros(480, 640, 10, 3));

The builtin function size returns a vector with all the dimensions of an array:

2However, Ctrl-D will harmlessly abort any command.

3



>> size(sequence)

ans =

[480 640 10 3]

>>

The function whos shows the sizes and storage requirements of all the variables in the

workspace, which is the space of variables known by the Matlab interpreter.

Matlab has a rather rich, though simple, mechanism for referring to parts of an array.

Consider for instance the following array:

>> a = 10*(1:5)' * ones(1, 4) + ones(5,1) * (1:4)

a =

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

51 52 53 54

>>

We created this array by taking the vector 1:5, which is a row vector of the integers

between 1 and 5, that is, [1 2 3 4 5], transposing it with the prime, and multiplying it by

ten; this yields the column vector 2
6666664

10

20

30

40

50

3
7777775

or inMatlab notation [10; 20; 30; 40; 50], where the semicolon starts a new row. The

call ones(1, 4) to the builtin function ones creates a 1� 4 matrix of ones, so 10*(1:5)'

* ones(1, 4) is 2
6666664

10 10 10 10

20 20 20 20

30 30 30 30

40 40 40 40

50 50 50 50

3
7777775

4



and similarly ones(5,1) * (1:4) is

2
6666664

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

3
7777775

and adding the two together yields the 5� 4 matrix a shown in the example. The following

commands refer to parts of a. This should be self-explanatory. If not, type help colon to

�nd out.

>> a(3,2)

ans =

32

>> a(:, 3)

ans =

13

23

33

43

53

>> a(1, :)

ans =

11 12 13 14

>> a(2:4, 1:3)

ans =

21 22 23

31 32 33

41 42 43

>> a(1:2:5, 1:3)

ans =

5



11 12 13

31 32 33

51 52 53

>>

The ans variable is where Matlab puts results from an expression unless we specify

some other destination. This is a variable like any other. However, its value is rede�ned by

every command that returns a value, so be careful in its use.

In Matlab, variables are not declared. If you say a = 5 or a = [1 2], then a is an

array of numbers (a scalar is a 1 � 1 array). If you say a = 'quaternion', then a is a

string, that is, an array of characters, in this case of length 10, and a(6) is the character

'r'. Variables can also refer to more complex objects called cell lists and structures. These

data types are described in the online manual.

Functions and Scripts

The following program reads an image from a �le in either pgm (\portable gray map") or

ppm (\portable pixel map") format. Gray maps are black-and-white images, pixel maps are

color images. Here is a description of these formats:

� A \magic number" for identifying the �le type. The two characters 'P5' are used for

pgm and 'P6' for pgm.

� Whitespace (blanks, TABs, carriage returns, line feeds).

� The image width in pixels, formatted as ASCII characters in decimal.

� Whitespace.

� The image height in pixels, again in ASCII decimal.

� Whitespace.

� The maximum value for each component, again in ASCII decimal. The only value

allowed here is 255.

� Whitespace.

� Width � height gray values for pgm, or width � height � 3 color values for ppm. These

values are raw bytes, with no separators. For ppm images, the three values for each

pixel are adjacent to each other, and correspond to red, green, and blue values. Values

(or triples of values for ppm) start at the top-left corner of the image, proceeding in

normal English reading order.

� Characters from a '#' to the next end-of-line are ignored (comments) if they appear

before the pixel values.

6



A possible source of program errors is that these image formats specify image width �rst and

image height second. Matlab, on the other hand, speci�es matrix dimensions by giving the

number of rows �rst, and the number of columns second.

To write a function to read an image in either format, we create a �le called pnmread.m.

The second character, n, stands for \any," meaning that this function will read either pgm

or ppm (this is a rather narrow notion of \any"). All Matlab functions are �les with the

same name as the function and extension .m. Here is most of pnmread:

function i = pnmread(filename)

% open file

[fid, msg] = fopen(filename, 'r');

if fid == -1,

error(msg)

end

% read magic number

magic = readstring(fid);

if length(magic) ~= 2,

error('Unknown image format')

end

if any(magic ~= 'P5') & any(magic ~= 'P6'),

error('Unknown image format')

else

w = readnumber(fid);

h = readnumber(fid);

maxvalue = readnumber(fid);

fgetl(fid);

if all(magic == 'P5'),

% read pgm image; we will complete this later

else % must be P6

% read ppm image; we will complete this later

end

end

% close file

fclose(fid);

The functions readstring and readnumber are not prede�ned, so we will need to write

those as well. They essentially skip comment lines, which start with a '#', and return the

next string or number in the �le.

The �rst thing to notice in the function de�nition above is a little redundancy: the base

of the �le name, pnmread, is repeated in the function declaration, the line starting with the

word function. What counts for Matlab is the �le name. You could replace pnmread

in the declaration with any other name, and this function would still be called pnmread,

7



because this is the name of the �le in which the function resides.

After the word function there is either no variable, a single variable, or a comma-

separated bracketed list of variables, as in function [a,b,c] = f(d). Thus, functions

in Matlab can return any number of arguments, including zero. When more than one

argument is returned, not all arguments need be read by the caller. Inside the function, a

builtin variable nargout speci�es how many arguments are actually being requested by the

caller for the particular function invocation. So if the function [a,b,c] = f(d) is being

called as follows:

[q,r] = f(3)

then nargout will have a value of 2 within that invocation of f. A variable nargin similarly

holds the number of arguments actually passed to the function, which cannot exceed the

number of formal parameters in the function declaration.

Notice that the return arguments are simply listed in the function declaration, and no

explicit return statement is needed in the function body. When the function returns to

the caller, the values of the return variables are the last values these variables were assigned

within the function body. For early returns from the middle of a function body, Matlab

provides a return statement, which takes no arguments.

If the function declaration is omitted, the �le becomes a script. This has two important

consequences: �rst, no input or output arguments can be passed to and from a script.

Second, all variables de�ned inside the function are also visible in the workspace. Consider

for instance the rather silly function

function a = add(b, c)

a = b+c;

de�ned in a �le add.m. Here is what happens when we call this function and we try to

examine b.

>> n = add(2,3)

n =

5

>> b

??? Undefined function or variable 'b'

because b is not known in the workspace. If we now comment out or remove the line function

a = add(b, c) from the �le add.m, this �le becomes a script and can be used as follows:

>> b = 2;

>> c = 3;

>> n = add

n =

5

8



>> b

b =

2

Because add.m is a script, the variables b and c are global, and can be examined from

the interpreter: typing b at the prompt, as shown above, displays 2.

Whenever you �nd yourself doing the same thing over and over again in Matlab, it is

a good idea to write a script. Another use for scripts is when you are debugging a function.

Although Matlab provides a complete set of debugging constructs (type help debug to

�nd out), it is often easier to comment out the function declaration of the broken function,

de�ne values for the arguments by hand, and run the headerless function, which is now a

script. This causes all the intermediate variables to be visible to the interpreter, and you

just need to type their names to inspect their values.

1.2 File I/O

Matlab has extensive input/output constructs, including fopen, fclose, fscanf, fprintf,

sscanf, read, write, fread, fwrite, input. Some of these behave similarly to the

homonymous C functions, but with small and important di�erences in how matrix argu-

ments are handled. Use the help command or the online documentation to see the details.

In our function pnmread, we use a rather minimal subset. The �rst line in

[fid, msg] = fopen(filename, 'r');

if fid == -1,

error(msg)

end

opens the �lename whose name is in the argument string filename. The result is a �le

identi�er fid, just like in C, and an error message stored in the string msg. This string is

empty ('') if no error has occurred. On error, fid is set to -1. The command error(msg)

displays the message in msg and aborts the function, returning control to the interpreter. If

this call to error is deep within a call stack, the entire stack is aborted.

Assuming that things went well with fopen, we can now read from the �le through its inte-

ger identi�er fid. Let us de�ne the two simple functions readstring and readnumber, which

we write in �les readstring.m and readnumber.m3. Here are the contents of readstring.m:

function s = readstring(fid)

s = fscanf(fid,'%s',1);

3It is a little annoying that every function must have its own �le. The advantage of this, however, is that

Matlab keeps checking if function de�nitions have changed, and if so reloads the newest de�nition. This is

very convenient during program development.

9



while s(1) == '#',

fgetl(fid);

s = fscanf(fid,'%s',1);

end

This function assumes that we are starting to read from a new line, and reads one blank-

space separated string from fid via the fscanf command, whose syntax is similar to the

equivalent C function. The result is placed in the variable s, which is a Matlab vector of

characters. Thus, the expression s(1) refers to the �rst character in s. If this character is a

pound sign #, it means that the current line is a comment; the command fgetl(fid) then

gets an entire line (the comment) and puts it nowhere: the comment is ignored. The next

string is read by the fscanf in the while loop. This continues until some non-comment

string is found. Since the variable s is in the function declaration as a return value, the

last string found is passed back to the caller when readstring returns.

The function readnumber does something similar to readstring, but looks for a number

rather than a generic string. Rather than repeating most of the body of readstring in

readnumber, we observe that a number is a string when it is in the image �le. Thus,

readnumber can simply call readstring and do a string-to-number conversion:

function n = readnumber(fid)

s = readstring(fid);

n = sscanf(s,'%d');

Rather than using sscanf for the conversion, we could have used the builtin function str2num

with the same e�ect.

Conditional Constructs

Going back to our function pnmread, the command

magic = readstring(fid);

reads a string from fid and assigns it to the variable magic. This string is expected to

contain the magic number P5 for pgm images, or P6 for ppm. We check if this is the case

with an if statement

if length(magic) ~= 2,

error('Unknown image format')

end

if any(magic ~= 'P5') & any(magic ~= 'P6'),

error('Unknown image format')

else

...

end

10



The comma at the end of the if is optional. It is required when the statement after the

condition is written on the same line. Let us consider the second if �rst. Notice that the

logical 'and' operator in Matlab is a single ampersand, &, unlike C. Similarly, 'or' is a

single vertical bar, |. Negation is expressed by a tilde, �, so magic �= 'P5' means \magic

is not equal to 'P5'". To understand the expression any(magic �= 'P5'), notice that in

Matlab equality (==) or inequality (�=) can be applied to arrays, which must be of equal

sizes. This is the reason for the �rst if above,

if length(magic) ~= 2,

error('Unknown image format')

end

Without this check, the comparison magic �= 'P5' could generate aMatlab error if magic

has a length di�erent from 2. The builtin function length returns the length of a vector, or

the maximum dimension of an array.

When applied to vectors, the equality or inequality operator returns a vector of zeros and

ones, corresponding to an element-by-element comparison between the two vectors. Thus,

magic �= 'P5' returns [0 0] if and only if the two strings are equal. The builtin function

any returns 1 if any of the elements of the vector are non-zero. Otherwise it returns 0.

Type help any to see what any does with arrays. Thus, any corresponds to the existential

quanti�er. The Matlab function all corresponds to the universal quanti�er.

The rest of our sketch of pnmread is obvious:

w = readnumber(fid);

h = readnumber(fid);

maxvalue = readnumber(fid);

fgetl(fid);

if all(magic == 'P5'),

% read pgm image

else % must be P6

% read ppm image

end

We read the image width w, the image height h, the maximum pixel value maxvalue, and

go the the beginning of a new line with fgetl(fid). Without this, the ASCII code of the

newline character itself would be interpreted as the �rst pixel value.

Reading and Reshaping Matrices

We are now ready to do the real work of reading a pgm or a ppm image. Here Matlab has

a small inconsistency, which is caused by the fact that old versions of Matlab only allowed

vectors and matrices, and no arrays with more dimensions. The low-level fread function,

even in Matlab 5, reads into either a vector or a matrix, but not into an array with more

dimensions. Thus, for the case of a ppm image, we �rst read into a matrix, and then convert

this matrix into an array with three dimensions. Here is the complete code:

11



function i = pnmread(filename)

% open file

[fid, msg] = fopen(filename, 'r');

if fid == -1,

error(msg)

end

% read magic number

magic = readstring(fid);

if length(magic) ~= 2,

error('Unknown image format')

end

if any(magic ~= 'P5') & any(magic ~= 'P6'),

error('Unknown image format')

else

w = readnumber(fid);

h = readnumber(fid);

maxvalue = readnumber(fid);

fgetl(fid);

if all(magic == 'P5'),

% read pgm image

i = fread(fid, [w h], 'uint8')';

else % must be P6

% read ppm image

pixels = uint8(fread(fid, [3 w*h], 'uint8'));

i = uint8(zeros(h, w, 3));

i(:, :, 1) = reshape(pixels(1,:), w, h)'; % red

i(:, :, 2) = reshape(pixels(2,:), w, h)'; % green

i(:, :, 3) = reshape(pixels(3,:), w, h)'; % blue

end

end

% close file

fclose(fid);

When the image is a pgm (magic code P5), the instruction

i = fread(fid, [w h], 'uint8')';

reads the image into an array of size w � h, rather than h � w. In fact, fread reads data

into matrices in column-major order, while pgm images are stored in row-major order. The

prime at the end of the instruction above then transposes the result to obtain the correct

image orientation.

If Matlab 5 were completely consistent, the statements in the else part of the if

statement, where the ppm image is being read, could be replaced by a single statement

12



that instructs Matlab to read w � h � 3 8-bit unsigned integers (uint8s) from �le fid,

and arrange them into an array with dimensions [h w 3] (modulo proper transpositions to

account for the di�erent ordering conventions in Matlab and in the ppm format).

Since this is not (yet) allowed, we �rst read the image into a 3�wh array called pixels.

In this way, each row of pixels is devoted to a di�erent color band: byte 1 in the image

goes to pixels(1,1); byte 2 goes to pixels(2,1); byte 3 goes to pixels(3,1). We have

now read the �rst pixel (red, green, blue), and we go back to row 1, entry pixel(1, 2), for

the red entry of pixel 2, and so forth. We then use the builtin function reshape to reshape

the three rows of pixels into arrays of size w � h, transpose the results, place these into

the h � w � 3 array i, which is preallocated both for e�ciency and to obtain the proper

data type uint8 (Matlab would make i double 
oating-point by default). The function

reshape reads the input array in lexicographic order (column-major order for matrices) and

returns an array with the speci�ed dimensions. The number of elements in the input array

must be equal to the product of the speci�ed dimensions.

Finally, closing the �le with fclose(fid) makes the �le descriptor fid available for other

�les.

Writing an Image

At this point you should know almost enough about Matlab to write a function pnmwrite

that writes a black-and-white image to a �le in pgm format, and a color image to a �le in

ppm format. On one hand, writing an image is easier than reading it because writing to a

�le requires no parsing. On the other hand, writing is slightly trickier than reading in that

the values in the input array need to be normalized to 0 � 255. Also, the image must be

converted to double by something like

i = double(i)

both because subtraction make no sense for unsigned integer values and because theMatlab

function fwrite only works on arrays of double-precision 
oating-point numbers. For the

normalization, it is useful to know the Matlab functions min and max (type help min...).

Try to write pnmwrite yourself before looking at the following code.

% linearly maps the values in the given array to [0 255], quantizes

% to integers, and stores the result in the specified file as a raw

% pgm or ppm image; returns the number of bytes written; the input

% array must be either of size [h w] or of size [h w 3]

function count = pnmwrite(i, filename)

fid=fopen(filename,'w');

h = size(i, 1);

w = size(i, 2);

if size(i, 3) == 1,

13



bands = 1;

magic = 'P5';

pgm = 1;

elseif size(i, 3) == 3,

bands = 3;

magic = 'P6';

pgm = 0;

else

error('Third array dimension must be either 1 or 3')

end

% convert input to double if necessary, so arithmetic operations

% make sense; also, fwrite only works on doubles

i = double(i);

% scale pixel values;

% grays should not change to blacks, hence the outermost min

minvalue = min(0, min(min(min(i))));

maxvalue = max(max(max(i)));

i = uint8(round((i - minvalue) * 255 / maxvalue));

% put pixels into a 3 x (w*h) or a 1 x (w*h) array of 8-bit integers,

% one row per color band

a = zeros(bands, w*h);

for b = 1:bands,

a(b, :) = reshape(i(:, :, b)', 1, w*h);

end

% write header

fprintf(fid,'%s\n%d %d\n%d\n', magic, w, h, 255);

% write pixels (a is read in column-major order')

count = fwrite(fid, a, 'uint8');

fclose(fid);

Notice that because of the grey-level normalization in pnmwrite, typing

i = pnmread('a.pgm');

pnmwrite(i, 'b.pgm');

j = pnmread('b.pgm');

pnmwrite(j, 'c.pgm');

may result in an image b.pgm di�erent from a.pgm. However, the images in b.pgm and c.pgm

should be equal to each other. The same holds for color images.

14



Displaying and Printing Images

One of the most useful features of Matlab is its extensive set of display functions. To

display an image, type

img = pnmread(filename);

imagesc(img);

axis('square')

The call axis('square') adjusts the aspect ratio of the display appropriately. The im-

age appears with axis tickmarks that are often useful to identify rows and columns. Both

tickmarks and the frame around the picture can be turned o� with the command

axis('off')

There is also a function image, which is simpler than imagesc. However, image does not

scale the image values to use the colormap of the display appropriately, so using image is

not recommended. If the image is black-and-white, it will still be displayed with a color

colormap. To obtain a proper display, type

colormap(gray)

which installs a gray-value colormap. Colormaps can be manipulated in many ways in

Matlab. Type help colormap to �nd out how to use them.

To print an image to a postscript �le named f.eps, type

print -deps f.eps

This will print a black-and-white copy of the picture in the current �gure, which is either

the last �gure you worked on or the one you select with the figure command. A color

postscript �le can be generated with

print -depsc f.eps

Many other options exist. Type help print for details. The print command prints any-

thing in the current �gure, including plots.

A single scanline of a black-and-white image can be plotted by a command like

plot(i(100, :))

and a patch of the image can be displayed by

mesh(i(100:150, 80:120))

which draws a surface as a mesh. The mesh can be �lled, shaded, lit in very many di�erent

ways by using the surf command (for \surface") instead of mesh. Again, the help command

or the online documentation gives all the details.

15



2 Going Ahead

The simple programming examples above are important in their own merit, because you will

often have to read, write, print, and visualize images. The Matlab functions imread and

imwrite read and write images in many other formats (but not in pgm or ppm).

Matlab has a very rich set of builtin functions. Some are written as Matlab code,

and can be examined by using the type command, which displays the code itself. The help

command or the online documentation give details. In particular, type help images to see

the very long list of available image processing routines.

While Matlab is perhaps too ine�cient to be used for production code for computer

vision or graphics, once you start using it you will realize that the very modest learning time

it requires pays o� handsomely in terms of increased code productivity and ease of use when

developing a program prototype or tinkering with an idea that is not yet fully developed.

16


