

Motivation

- Good calibration is important when we need to
- Reconstruct a world model: Virtual L.A. project
- Interact with the world
- Robot, hand-eye coordination

Compound Lens Imaging

- Inexpensive single lens systems distort image at its periphery
- Compound lenses may be used to reduce chromatic effecis anppinfashion effects

What is Camera Calibration?

- Primarily, finding the quantities internal to the camera that affect the imaging process
- Position of image center in the image - It is typically not at (width/2, height/2) of image
- Focal length
- Different scaling factors for row pixels and column pixels
- Skew factor
- Lens distortion (pin-cushion effect)

Scaling of Rows and Columns in Image

- Camera pixels are not necessarily square
- Camera output may be analog (NTSC)
- Image may be obtained by digitizing card
- A/D converter samples NTSC signal

Variety of Techniques

- VERY large literature on the subject
- Work of Roger Tsai influential
- Linear algebra method described here
- Can be used as initialization for iterative non linear methods.
- Some interesting methods use vanishing points

Camera and Calibration Target

Calibration Procedure

- Calibration target: 2 planes at right angle with checkerboard patterns (Tsai grid)
- We know positions of pattern corners only with respect to a coordinate system of the target
- We position camera in front of target and find images of corners
- We obtain equations that describe imaging and contain internal parameters of camera
- As a side benefit, we find position and orientation of camera with respect to target (camera pose)

Image Processing of Image of Target

- Canny edge detection
- Straight line fitting to detected linked edges
- Intersecting the lines to obtain the image corners
- Matching image corners and 3D target checkerboard corners
- By counting if whole target is visible in image
- We get pairs (image point)--(world point)

$$
\left(x_{i}, y_{i}\right) \rightarrow\left(X_{i}, Y_{i}, Z_{i}\right)
$$

Central Projection

If world and image points are represented by homogeneous vectors, central projection is a linear transformation:
$x_{i}=f \frac{x_{s}}{z_{s}}$

Internal Camera Parameters

$\left[\begin{array}{c}u^{\prime} \\ v^{\prime} \\ w^{\prime}\end{array}\right]=\left[\begin{array}{cccc}\alpha_{x} & s & x_{0} & 0 \\ 0 & \alpha_{y} & y_{0} & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}x_{s} \\ y_{s} \\ z_{s} \\ 1\end{array}\right]$ with $\begin{aligned} & \alpha_{x}=f k_{x} \\ & \alpha_{y}=-f k_{y}\end{aligned} \begin{aligned} & x_{p i x}=u^{\prime} / w^{\prime} \\ & y_{p i x}=v^{\prime} / w^{\prime}\end{aligned}$
$\left[\begin{array}{cccc}\alpha_{x} & s & x_{0} & 0 \\ 0 & \alpha_{y} & y_{0} & 0 \\ 0 & 0 & 1 & 0\end{array}\right]=\left[\begin{array}{ccc}\alpha_{x} & s & x_{0} \\ 0 & \alpha_{y} & y_{0} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]=\mathbf{K}\left[\begin{array}{lll}\mathbf{I}_{3} & \mid & \mathbf{0}_{3}\end{array}\right]$

- α_{x} and α_{y} "focal lengths" in pixels

- K is called calibration matrix. Five degrees of freedom. -K is a 3×3 upper triangular matrix

Homogeneous Coordinates

$\left[\begin{array}{c}x_{s} \\ y_{S} \\ z_{s}\end{array}\right]=\left[\begin{array}{l}T_{x} \\ T_{y} \\ T_{z}\end{array}\right]+\left[\begin{array}{ccc}\mathbf{I . i} & \mathbf{J . i} & \text { K.i } \\ \mathbf{I . j} & \text { J.j} & \text { K.j } \\ \mathbf{I . k} & \text { J.k } & \text { K.k }\end{array}\right]\left[\begin{array}{c}X_{S} \\ Y_{S} \\ Z_{S}\end{array}\right]$
$\left[\begin{array}{c}x_{S} \\ y_{S} \\ z_{S} \\ 1\end{array}\right]=\left[\begin{array}{cccc|c}\mathbf{I} . \mathbf{i} & \mathbf{J . i} & \mathbf{K . i} & T_{x} \\ \mathbf{I} \mathbf{j} & \mathbf{J . j} & \mathbf{K . j} & T_{y} \\ \mathbf{I} . \mathbf{k} & \mathbf{J . k} & \mathbf{K . k} & T_{z} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & 1\end{array}\right]\left[\begin{array}{c}X_{S} \\ Y_{S} \\ Z_{S} \\ 1\end{array}\right] \quad\left[\begin{array}{c}x_{S} \\ y_{S} \\ z_{S} \\ 1\end{array}\right]=\left[\begin{array}{cc}\mathbf{R} & \mathbf{T} \\ \mathbf{0}_{3}^{\mathrm{T}} & 1\end{array}\right]\left[\begin{array}{c}X_{S} \\ Y_{S} \\ Z_{S} \\ 1\end{array}\right]$

Homogeneous Coordinates 2

- Here we use- R $\tilde{\mathbf{C}}$ instead of \mathbf{T}

$$
\left[\begin{array}{c}
x_{S} \\
y_{S} \\
z_{S} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R} \tilde{\mathbf{C}} \\
\mathbf{0}_{\mathbf{3}}^{\mathrm{T}} & 1
\end{array}\right]\left[\begin{array}{c}
X_{S} \\
Y_{S} \\
Z_{S} \\
1
\end{array}\right]
$$

Properties of Matrix \mathbf{P}

- Further simplification of \mathbf{P} :
$\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}\mathbf{I}_{3} & \mid \\ \mathbf{0}_{3}\end{array}\right]\left[\begin{array}{cc}\mathbf{R} & -\mathbf{R} \tilde{\mathbf{C}} \\ \mathbf{0}_{3}^{\mathrm{T}} & 1\end{array}\right] \mathbf{X}$
$\left[\begin{array}{lll}\mathbf{I}_{3} & \mid & \mathbf{0}_{3}\end{array}\left[\begin{array}{cc}\mathbf{R} & -\mathbf{R} \tilde{\mathbf{C}} \\ \mathbf{0}_{3}^{\mathrm{T}} & 1\end{array}\right]=\left[\begin{array}{ll}\mathbf{R} & -\mathbf{R} \tilde{\mathbf{C}}\end{array}\right]=\mathbf{R}\left[\begin{array}{lll}\mathbf{I}_{3} & \mid & -\tilde{\mathbf{C}}\end{array}\right]\right.$
$\mathbf{x}=\mathbf{K} \mathbf{R}\left[\begin{array}{lll}\mathbf{I}_{3} & \mid & -\widetilde{\mathbf{C}}\end{array}\right] \mathbf{X}$
$\mathbf{P}=\mathbf{K R}\left[\begin{array}{lll}\mathbf{I}_{3} & \mid & -\tilde{\mathbf{C}}\end{array}\right]$
- Phas 11 degrees of freedom:
- 5 from triangular calibration matrix $\mathbf{K}, 3$ from \mathbf{R} and 3 from $\widetilde{\mathbf{C}}$
- \mathbf{P} is a fairly general 3×4 matrix
-left 3×3 submatrix KR is non-singular

Calibration

- 1. Estimate matrix \mathbf{P} using scene points and their images
- 2. Estimate the interior parameters and the exterior parameters

| $\mathbf{P}=\mathrm{K}_{\mathrm{R}}\left[\begin{array}{lll}\mathrm{I}_{3} & \text { I } & -\tilde{\mathbf{C}}\end{array}\right]$ |
| :--- | :--- | :--- |

- Left 3×3 submatrix of \mathbf{P} is product of uppertriangular matrix and orthogonal matrix

Finding Camera Translation

- Find homogeneous coordinates of C in the scene
- \mathbf{C} is the null vector of matrix \mathbf{P}
$\mathbf{- P} \mathbf{P}=0:$
$\mathbf{P}=\mathbf{K} \mathbf{R}\left[\begin{array}{lll}\mathbf{I}_{3} & \mid & -\tilde{\mathbf{C}}\end{array}\right] \quad\left[\begin{array}{llll}1 & 0 & 0 & X_{c} \\ 0 & 1 & 0 & Y_{c} \\ 0 & 0 & 1 & Z_{c}\end{array}\right]\left[\begin{array}{c}X_{c} \\ Y_{c} \\ Z_{c} \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right], ~$
- Find null vector \mathbf{C} of \mathbf{P} using SVD
- \mathbf{C} is the unit singular vector of \mathbf{P} corresponding to the smallest singular value (the last column of \mathbf{V}, where \mathbf{P} $=\mathbf{U} \mathbf{D ~ V}^{\mathbf{T}}$ is the SVD of \mathbf{P})

Finding Camera Orientation and Internal Parameters

- Left 3×3 submatrix \mathbf{M} of \mathbf{P} is of form $\mathbf{M}=\mathbf{K} \mathbf{R}$
- \mathbf{K} is an upper triangular matrix
- \mathbf{R} is an orthogonal matrix
- Any non-singular square matrix Mcan be decomposed into the product of an uppertriangular matrix \mathbf{K} and an orthogonal matrix \mathbf{R} using the RQ factorization
- Similar to QR factorization but order of 2 matrices is reversed

$\begin{array}{c}\mathrm{RQ} \text { Factorization of } \mathbf{M} \\ \mathbf{R}_{\mathrm{x}}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c\end{array}\right], \mathbf{R}_{\mathbf{y}}=\left[\begin{array}{ccc}c^{\prime} & 0 & s^{\prime} \\ 0 & 1 & 0 \\ -s^{\prime} & 0 & c^{\prime}\end{array}\right], \mathbf{R}_{\mathrm{z}}=\left[\begin{array}{ccc}c^{\prime \prime} & -s^{\prime \prime} & 0 \\ s^{\prime \prime} & c^{\prime \prime} & 0 \\ 0 & 0 & 1\end{array}\right] \\ \text { - Compute } c=-\frac{m_{33}}{\left(m_{32}^{2}+m_{33}^{2}\right)^{1 / 2}}, s=\frac{m_{32}}{\left(m_{32}^{2}+m_{33}^{2}\right)^{1 / 2}} \\ \text { - Multiply } \mathbf{M} \text { by } \mathbf{R}_{\mathrm{x}} \text {. The resulting term at }(3,2) \text { is zero } \\ \text { because of the values selected for } c \text { and } s \\ \text { - Multiply the resulting matrix by } \mathbf{R}_{\mathbf{y}}, \text { after selecting } c^{\prime} \text { and } \\ s^{\prime} \text { so that the resulting term at position }(3,1) \text { is set to zero } \\ \text { - Multiply the resulting matrix by } \mathbf{R}_{z}, \text { after selecting } c^{\prime} \text {, and } \\ s^{\prime \prime} \text { so that the resulting term at position }(2,1) \text { is set to zero } \\ \mathbf{M} \mathbf{R}_{\mathbf{x}} \mathbf{R}_{\mathbf{y}} \mathbf{R}_{\mathbf{z}}=\mathbf{K} \Rightarrow \mathbf{M}=\mathbf{K} \mathbf{R}_{\mathbf{z}}^{\mathrm{T}} \mathbf{R}_{\mathbf{y}}^{\mathrm{T}} \mathbf{R}_{\mathbf{x}}^{\mathrm{T}}=\mathbf{K} \mathbf{R}\end{array}$

Computing Matrix \mathbf{P}

- Use corresponding image and scene points
- 3D points \mathbf{X}_{i} in world coordinate system
- Images $\mathbf{x}_{\mathbf{i}}$ of $\mathbf{X}_{\mathbf{i}}$ in image
- Write $\mathbf{x}_{\mathbf{i}}=\mathbf{P} \mathbf{X}_{\mathbf{i}}$ for all i
- Similar problem to finding projectivity matrix \mathbf{H} (i.e. homography) in homework

> Improved Computation of P
> - $\mathbf{x}_{\mathbf{i}}=\mathbf{P} \mathbf{X}_{\mathrm{i}}$ involves homogeneous coordinates, thus $\mathbf{x}_{\mathbf{i}}$ and $\mathbf{P} \mathbf{X}_{\mathrm{i}}$ just have to be proportional: $\quad \mathbf{x}_{\mathrm{i}} \times \mathbf{P} \mathbf{X}_{\mathbf{i}}=0$
> - Let $\mathbf{p}_{1}{ }^{\mathrm{T}}, \mathbf{p}_{2}{ }^{\mathrm{T}}, \mathbf{p}_{3}{ }^{\mathrm{T}}$ be the 3 row vectors of \mathbf{P}
$\Rightarrow\left[\begin{array}{ccc}\mathbf{0}_{4}^{\mathrm{T}} & -w_{\mathbf{i}}^{\prime} \mathbf{X}_{\mathbf{i}}^{\mathrm{T}} & v_{\mathbf{i}}^{\prime} \mathbf{X}_{\mathbf{i}}^{\mathrm{T}} \\ w_{i}^{\prime} \mathbf{X}_{\mathbf{i}}^{\mathrm{T}} & \mathbf{0}_{4}^{\mathrm{T}} & -u_{i}^{\prime} \mathbf{X}_{\mathbf{i}}^{\mathrm{T}} \\ -v_{i}^{\prime} \mathbf{X}_{\mathbf{i}}^{\mathrm{T}} & u_{\mathrm{i}}^{\prime} \mathbf{X}_{\mathbf{i}}^{\mathrm{T}} & \mathbf{0}_{4}^{\mathrm{T}}\end{array}\right]\left[\begin{array}{l}\mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3}\end{array}\right]=0 \quad\left[\begin{array}{l}\mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3}\end{array}\right]$ is a 12×1 vector

Solving A p $=0$

- Linear system A p=0
- When possible, have at least 5 times as many equations as unknowns (28 points)
- Minimize $\|\mathbf{A p}\|$ with the constraint $\|\mathbf{p}\|=1$
- P is the unit singular vector of \mathbf{A} corresponding to the smallest singular value (the last column of \mathbf{V}, where $\mathbf{A}=\mathbf{U} \mathbf{D}^{\mathbf{T}}$ is the SVD of \mathbf{A})
- Called Direct Linear Transformation (DLT)

Improved Computation of P , cont'd

- Third row can be obtained from sum of $u_{\mathrm{i}}{ }^{\prime}$ times first row $-v_{\mathrm{i}}^{\prime}$ times second row

$$
\left[\begin{array}{ccc}
\mathbf{0}_{4}^{\mathrm{T}} & -w_{\mathrm{i}}^{\prime} \mathbf{X}_{\mathrm{i}}^{\mathrm{T}} & v_{\mathrm{i}}^{\prime} \mathbf{X}_{\mathrm{i}}^{\mathrm{T}} \\
w_{i}^{\prime} \mathbf{X}_{\mathrm{i}}^{\mathrm{T}} & \mathbf{0}_{4}^{\mathrm{T}} & -u_{\mathrm{i}}^{\prime} \mathbf{X}_{\mathrm{i}}^{\mathrm{T}} \\
-v_{\mathrm{i}}^{\prime} \mathbf{X}_{\mathrm{i}}^{\mathrm{T}} & u_{\mathrm{i}}^{\prime} \mathbf{X}_{\mathrm{i}}^{\mathrm{T}} & \mathbf{0}_{4}^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{2} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]=0
$$

- So we get 2 independent equations in 11 unknowns (ignoring scale)
- With 6 point correspondences, we get enough equations to compute matrix \mathbf{P}

A $\mathbf{p}=0$

Improving \mathbf{P} Solution with Nonlinear Minimization

- Find pusing DLT
- Use as initialization for nonlinear minimization of $\sum d\left(\mathbf{x}_{\mathbf{i}}, \mathbf{P} \mathbf{X}_{\mathbf{i}}\right)^{2}$
- Use Levenberg-Marquardt iterative minimization

Radial Distortion Modeling

- In pixel cordinates the correction is written

$x_{c}-x_{0}=L(r)\left(x-x_{0}\right)$
$y_{c}-y_{0}=L(r)\left(y-y_{0}\right)$
with
$r^{2}=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}$
$L(r)=1+\kappa_{1} r+\kappa_{2} r^{2}+\ldots$
- Minimize $f\left(\kappa_{1}, \kappa_{2}\right)=\sum\left(x_{i}^{\prime}-x_{c i}\right)^{2}+\left(y_{i}^{\prime}-y_{c i}\right.$ using lines known to ${ }^{i}$ be straight (x^{\prime}, y^{\prime}) is radial projection of (x, y) on straight line

References

- Multiple View Geometry in Computer Vision, R. Hartley and A. Zisserman, Cambridge University Press, 2000, pp. 138-183
- Three-Dimensional Computer Vision: A Geometric Approach, O. Faugeras, MIT Press, 1996, pp. 33-68
- "A Versatile Camera Calibration Technique for 3D Machine Vision", R. Y. Tsai, IEEE J. Robotics \& Automation, RA-3, No. 4, August 1987, pp. 323-344

