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Calculus, finite differences
Interpolation, Splines, NURBS

CMSC 828 D

Least Squares, SVD, Pseudoinverse 

• Ax=b A is m×n,  x is n×1 and b is m×1.
• A=USVt where U is m×m, S is m×n and V is n×n
• USVt x=b.                   So SVt x=Utb
• If A has rank r, then r singular values are significant

Vtx= diag(σ1
-1,…,σr

-1 ,0, …, 0)Utb
x= Vdiag(σ1

-1,…,σr
-1 ,0, …, 0)Utb
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•Pseudoinverse A+=V diag(σ1
-1,…,σr

-1 ,0, …, 0) Ut

–A+ is a n×m matrix. 

–If rank (A) =n then  A+=(AtA)-1A
–If A is square A+=A-1

Well Posed problems
• Hadamard postulated that for a problem to be “well 

posed”
1. Solution must exist
2. It must be unique
3. Small changes to the input data should cause small changes to the 

solution

• Many problems in science and computer vision result 
in “ill-posed” problems. 

– Numerically it is common to have condition 3 violated.

• Recall from the SVD 1
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•If σs are close to zero small changes in the “data” vector  
b cause big changes in x.
•Converting ill-posed problem to well-posed one is called 
regularization.

Regularization
• Pseudoinverse provides one means of 

regularization

• Another is to solve (A+εI)x=b 2
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•Solution of the regular problem requires minimizing of ||Ax-b||2

•This corresponds to minimizing

||Ax-b||2 + ε||x||2

–Philosophy – pay a “penalty” of O(ε) to ensure solution does not blow up.
–In practice we may know that the data has an uncertainty of a certain 
magnitude … so it makes sense to optimize with this constraint.

•Ill-posed problems are also called “ill-conditioned”

Outline
• Gradients/derivatives 

– needed in detecting features in images
• Derivatives are large where changes occur

– essential for optimization

• Interpolation
– Calculating values of a function at a given point 

based on known values at other points
– Determine error of approximation
– Polynomials, splines

• Multiple dimensions

Derivative

• In 1-D

• Taylor series: for a continuous function
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•Geometric interpretation 
–Approximate smooth curve
by values of tangent, 
curvature, etc.
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Remarks
• Mean value theorem:

– f(b)-f(a)=(b-a)df/dx|c a<c<b

– There is at least one point between
a and b on the curve where the slope 
matches that of the straight line joining
the two points x

f(x)

•df/dx=0
–represents a minimum, maximum or 
saddle point of the curve y=f(x)

–d2f/dx2 > 0 minimum,   d2f/dx2 < 0 maximum

–d2f/dx2 = 0   saddle point

Finite differences

• Approximate derivatives at points by using 
values of a function known at certain 
neighboring points

• Truncate Taylor series and obtain an 
expression for the derivatives

• Forward differences: use value at the point 
and forward   x x x x

• Backward 
differences
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Finite Differences
• Central differences 

– Higher order approximation
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–However we need data on both sides

–Not possible for data on the edge of an image

–Not possible in time dependent problems (we have 
data at current time and previous one)

Approximation
• Order of the approximation O(h), O(h2)

• Sidedness, one sided, central etc.

• Points around point where derivative is calculated that are 
involved are called the “stencil” of the approximation.

• Second derivative
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•One sided difference of O(h2)

Polynomial interpolation
• Instead of playing with Taylor series we can obtain fits 

using polynomial expansions.
– 3 points fit a quadratic ax2+bx+c

• Can calculate the 1st and 2nd derivatives

– 4 points fit a cubic, etc.

• Given  x1, x2, x3, x4 and values f1, f2, f3, f4
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•Vandermonde system – fast algorithms for solution.
•If more data than degree .. Can get a least squares solution.
•Matlab functions polyfit, polyval

Remarks
• Can use the fitted polynomial to calculate derivatives

• If equation is solved analytically this provides 
expressions for the derivatives.

• Equation can become quite ill conditioned 
– especially if equations are not normalized.

ax2+bx+c can also be written as a* (x-x0)2+b* (x-x0) + c*

– Find the polynomial through x0-h, x0, x0+h
2

0 1

1 0
2

2 1

1

1 0 0

1

h h a f

a f

h h a f

− −    
     =     
         

–a0=f0,   a1=,(f1-f-1)/2h a2=(f-1-2f0+f1)/2h2

–Gives the expected values of the derivatives.
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Polynomial interpolation
• Results from Algebra

– Polynomial of degree n through n+1 points is unique 
– Polynomials of degree less than xn is an n dimensional space.
– 1,x,x2, …,xn-1 form a basis.

• Any other polynomial can be represented as a combination of these 
basis elements.

– Other sets of independent polynomials can also form bases.

• To fit a polynomial through x0,…,xn with values f0, …,fn
– Use Lagrangian basis lk.
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–p(x)=a0l0+a1l1+…+anln.
–Then ai=fi

–Many polynomial bases: Chebyshev, Legendre, Laguerre …
–Bernstein, Bookstein …

Increasing n
• As n increases we can 

increase the polynomial 
degree.

• However the function in 
between is very poorly 
interpolated.

• Becomes ill-posed.

• For large n interpolant 
blows up.

•Idea: 
–Taylor series provides good 
local approximations

–Use local approximations

•Splines

Spline interpolation
• Piecewise polynomial approximation

– E.g. interpolation in a table
– Given xk ,xk+1,  fk and fk+1 evaluate f at a point x such that

xk<x<xk+1
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•Construct approximations of this type on each subinterval
This method uses Lagrangian interpolants

•Endpoints are called breakpoints

•For higher polynomial degree we need more conditions

• e.g. specify values at points inside the interval [xk<x<xk+1]
•Specifying function and derivative values at the end points 
xk,xk+1 leads to cubic Hermite interpolation

Cubic Spline
• Splines – name given to a flexible piece of wood used by 

draftsmen to draw curves through points.
– Bend wood piece so that it passes through known points and draw a line 

through it.
– Most commonly used interpolant used is the cubic spline
– Provides continuity of the function, 1st and 2nd derivatives at the 

breakpoints.
– Given n+1 points we have n intervals
– Each polynomial has four 

unknown coefficients
• Specifying function values 

provides 2 equations
• Two derivative continuity

equations provides two more
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•Left with two free conditions. Usually chosen so that second 
derivatives are zero at ends

Interpolating along a curve

• Curve can be given
as x(s) and y(s)

• Given xi,yi,si

• Can fit splines for x and y

• Can compute tangents, 
curvature and normal based on 
this fit

• Things like intensity van vary 
along the curve. Can also fit 
I(s)
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Two and more dimensions
• Gradient

• Directional derivative in 
the direction of a vector n
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•Geometric interpretation
–∇f is normal to the surface f(x)=c

– n = ∇f/|∇ f|

•Taylor series
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Finite differences
• Follows a similar pattern. One dimensional 

partial derivatives are calculated the same way.

• Multiple dimensional operators are computed 
using multidimensional stencils.
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Interpolation

• Polynomial interpolation in multiple 
dimensions

• Pascals triangle

• Least squares

• Move to a local coordinate system

Tensor product splines

• Splines form a local basis.

• Take products of one dimensional basis 
functions to make a basis in the higher 
dimension.

NURBS

• Used for precisely specifying n-d data.

• October 3 Tapas Kanungo, NURBS: Non-
Uniform Rational B-Splines

Derivative of a matrix Jacobian and Hessian


