## Calculus, finite differences Interpolation, Splines, NURBS

## CMSC 828 D

## Least Squares, SVD, Pseudoinverse

- $\mathbf{A x}=\mathbf{b} \mathbf{A}$ is $m \times n, \mathbf{x}$ is $n \times 1$ and $\mathbf{b}$ is $m \times 1$.
- $\mathbf{A}=\mathbf{U S V}^{t}$ where $\mathbf{U}$ is $\mathrm{m} \times \mathrm{m}, \mathbf{S}$ is $\mathrm{m} \times \mathrm{n}$ and $\mathbf{V}$ is $n \times n$
- $\mathbf{U S V}^{t} \mathbf{x}=\mathbf{b}$. So $\quad \mathbf{S V}^{t} \mathbf{x}=\mathbf{U}^{\mathbf{t}} \mathbf{b}$
- If A has rank $r$, then $r$ singular values are significant $\mathbf{V}^{\mathbf{t}} \mathbf{x}=\operatorname{diag}\left(\sigma_{1}{ }^{-1}, \ldots, \sigma_{\mathrm{r}}^{-1}, 0, \ldots, 0\right) \mathbf{U}^{\mathbf{t}} \mathbf{b}$ $\mathbf{x}=\mathbf{V} \operatorname{diag}\left(\sigma_{1}^{-1}, \ldots, \sigma_{\mathrm{r}}^{-1}, 0, \ldots, 0\right) \mathbf{U}^{\mathbf{b}} \mathbf{b}$

$$
\mathbf{x}_{r}=\sum_{i=1}^{r} \frac{\mathbf{u}_{i}^{\prime} \mathbf{b}}{\sigma_{i}} \mathbf{v}_{i} \quad \sigma_{r}>\varepsilon, \sigma_{r+1} \leq \varepsilon
$$

-Pseudoinverse $\mathbf{A}^{+}=\mathbf{V} \operatorname{diag}\left(\sigma_{1}^{-1}, \ldots, \sigma_{\mathbf{r}}^{-1}, 0, \ldots, 0\right) \mathbf{U}^{\mathrm{t}}$
$-\mathbf{A}^{+}$is a $n \times m$ matrix.

- If rank $(\mathbf{A})=n$ then $\mathbf{A}^{+}=\left(\mathbf{A}^{t} \mathbf{A}\right)^{-1} \mathbf{A}$
- If $\mathbf{A}$ is square $\mathbf{A}^{+=\mathbf{A}^{-1}}$


## Well Posed problems

- Hadamard postulated that for a problem to be "well posed"

1. Solution must exist
2. It must be unique
3. Small changes to the input data should cause small changes to the solution

- Many problems in science and computer vision result in "ill-posed" problems.
- Numerically it is common to have condition 3 violated.
- Recall from the SVD $\mathbf{x}=\sum_{i=1}^{n} \frac{\mathbf{u}_{i}^{\prime} \mathbf{b}}{\sigma_{i}} \mathbf{v}_{i} \quad \sigma_{r}>\varepsilon, \sigma_{r+1} \leq \varepsilon$
-If $\sigma$ s are close to zero small changes in the "data" vector b cause big changes in $\mathbf{x}$.
-Converting ill-posed problem to well-posed one is called regularization.


## Regularization

- Pseudoinverse provides one means of regularization
- Another is to solve $(\mathbf{A}+\varepsilon \mathbf{I}) \mathbf{x}=\mathbf{b} \quad \mathbf{x}=\sum_{i=1}^{n} \frac{\sigma_{i}}{\varepsilon+\sigma_{i}{ }^{2}}\left(\mathbf{u}_{i}^{\prime} \mathbf{b}\right) \mathbf{v}_{i}$
-Solution of the regular problem requires minimizing of $\|\mathbf{A x} \mathbf{x}\|^{2}$ -This corresponds to minimizing

$$
\|\mathbf{A x}-\mathbf{b}\|^{2}+\varepsilon\|\mathbf{x}\|^{2}
$$

Philosophy - pay a "penalty" of $\mathrm{O}(\varepsilon)$ to ensure solution does not blow up. -In practice we may know that the data has an uncertainty of a certain magnitude ... so it makes sense to optimize with this constraint
-Ill-posed problems are also called "ill-conditioned"

## Outline

- Gradients/derivatives
- needed in detecting features in images
- Derivatives are large where changes occur - essential for optimization
- Interpolation
- Calculating values of a function at a given point based on known values at other points
- Determine error of approximation
- Polynomials, splines
- Multiple dimensions


## Derivative

- In 1-D $\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- Taylor series: for a continuous function
$f(x+h)=f(x)+\left.h \frac{d f}{d x}\right|_{x}+\left.\frac{h^{2}}{2} \frac{d^{2} f}{d x^{2}}\right|_{x}+\cdots+\left.\frac{h^{n}}{n!} \frac{d^{n} f}{d x^{n}}\right|_{x}+\cdots$
$f(x-h)=f(x)-\left.h \frac{d f}{d x}\right|_{x}+\left.\frac{h^{2}}{2} \frac{d^{2} f}{d x^{2}}\right|_{x}+\cdots+\left.(-1)^{n} \frac{h^{n}}{n!} \frac{d^{n} f}{d x^{n}}\right|_{x}+\cdots$
-Geometric interpretation
-Approximate smooth curve
by values of tangent,
curvature, etc.
Remarks

| $-f(b)-f(a)=(b-a) d f / d x / c \quad a<c<b$ |
| :--- |
| - |
| There is at least one point between |
| $a$ and $b$ on the curve where the slope |
| matches that of the straight line joining |
| the two points |

-df/dx=0

- represents a minimum, maximum or
saddle point of the curve $y=f(x)$
$-d^{2} f / d x^{2}>0$ minimum, $d^{2} f / d x^{2}<0$ maximum
$-d^{2} f / d x^{2}=0 \quad$ saddle point


## Finite Differences

- Central differences
- Higher order approximation
$\left.2 \frac{d f}{d x}\right|_{x}=\frac{f(x+h)-f(x)}{h}-\left.\frac{h}{2} \frac{d^{2} f}{d x^{2}}\right|_{x}+\frac{f(x)-f(x-h)}{h}+\left.\frac{h}{2} \frac{d^{2} f}{d x^{2}}\right|_{x}+O\left(h^{2}\right)$
$\left.\frac{d f}{d x}\right|_{x}=\frac{f(x+h)-f(x-h)}{2 h}+O\left(h^{2}\right)$
-However we need data on both sides
-Not possible for data on the edge of an image
-Not possible in time dependent problems (we have data at current time and previous one)


## Finite differences

- Approximate derivatives at points by using values of a function known at certain neighboring points
- Truncate Taylor series and obtain an expression for the derivatives
- Forward differences: use value at the point and forward

$$
\begin{aligned}
& \text { X X X X } \\
& \left.\frac{d f}{d x}\right|_{x}=h^{-1}(f(x+h)-f(x))-\left.\frac{h}{2} \frac{d^{2} f}{d x^{2}}\right|_{x}+O\left(h^{2}\right) \\
& \left.\frac{d f}{d x}\right|_{x}=h^{-1}(f(x)-f(x-h))+\left.\frac{h}{2} \frac{d^{2} f}{d x^{2}}\right|_{x}+O\left(h^{2}\right)
\end{aligned}
$$ differences

## Approximation

- Order of the approximation $O(h), O\left(h^{2}\right)$
- Sidedness, one sided, central etc.
- Points around point where derivative is calculated that are involved are called the "stencil" of the approximation.
- Second derivative
$0=\frac{f(x+h)-f(x)}{h}-\left.\frac{h}{2} \frac{d^{2} f}{d x^{2}}\right|_{x}-\frac{f(x)-f(x-h)}{h}+\left.\frac{h}{2} \frac{d^{2} f}{d x^{2}}\right|_{x}+O\left(h^{2}\right)$ $\frac{d^{2} f}{d x^{2}}=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}+O(h)$
- One sided difference of $O\left(h^{2}\right)$

$$
\frac{d f}{d x}=\frac{-3 f(x)+4 f(x+h)-f(x+2 h)}{2 h}+O\left(h^{2}\right)
$$

## Remarks

- Can use the fitted polynomial to calculate derivatives
- If equation is solved analytically this provides expressions for the derivatives.
- Equation can become quite ill conditioned
- especially if equations are not normalized.

$$
a x^{2}+b x+c \text { can also be written as } a^{*}\left(x-x_{0}\right)^{2}+b^{*}\left(x-x_{0}\right)+c^{*}
$$

- Find the polynomial through $x_{0}-h, x_{0}, x_{0}+h$
 -Gives the expected values of the derivatives.
-Vandermonde system - fast algorithms for solution.
-If more data than degree .. Can get a least squares solution.
- Matlab functions polyfit, polyval


## Polynomial interpolation

- Results from Algebra
- Polynomial of degree $n$ through $n+1$ points is unique
- Polynomials of degree less than $\mathrm{x}^{\mathrm{n}}$ is an n dimensional space.
$-1, x, x^{2}, \ldots, x^{n-1}$ form a basis.
- Any other polynomial can be represented as a combination of these basis elements.
- Other sets of independent polynomials can also form bases.
- To fit a polynomial through $x_{0}, \ldots, x_{n}$ with values $f_{0}, \ldots, f_{n}$
- Use Lagrangian basis $l_{k} . \quad l_{k}=\prod_{\substack{i=0 \\ i=k}}^{n} \frac{x-x_{k}}{x_{k}-x_{i}}, k=0, \ldots, n$
$-p(x)=a_{0} l_{0}+a_{l} l_{l}+\ldots+a_{n} l_{n}$.
-Then $a_{i}=f_{i}$
-Many polynomial bases: Chebyshev, Legendre, Laguerre ...
-Bernstein, Bookstein ...


## Spline interpolation

- Piecewise polynomial approximation
- E.g. interpolation in a table
- Given $x_{k}, x_{k+1}, f_{k}$ and $f_{k+1}$ evaluate $f$ at a point $x$ such that $x_{k}<x<x_{k+1}$

$$
f(x)=\left\{\begin{array}{c}
f_{k+1} \frac{x-x_{k}}{x_{k+1}-x_{k}}+f_{k} \frac{x-x_{k+1}}{x_{k}-x_{k+1}}, \quad x_{k} \leq x \leq x_{k+1} \\
0 \quad \text { otherwise }
\end{array}\right.
$$

-Construct approximations of this type on each subinterval
This method uses Lagrangian interpolants
-Endpoints are called breakpoints
-For higher polynomial degree we need more conditions

- e.g. specify values at points inside the interval $\left[x_{k}<x<x_{k+1}\right]$
- Specifying function and derivative values at the end points
$x_{k}, x_{k+1}$ leads to cubic Hermite interpolation


## Interpolating along a curve

- Curve can be given as $x(s)$ and $y(s)$
- Given $x_{i} y_{i}, s_{i}$
- Can fit splines for $x$ and $y$
- Can compute tangents, curvature and normal based on this fit
- Things like intensity van vary along the curve. Can also fit
 I(s)


## Increasing $n$

- As $n$ increases we can increase the polynomial degree
- However the function in between is very poorly interpolated.
- Becomes ill-posed.
- For large $n$ interpolant blows up
-Idea:
-Taylor series provides good local approximation
Use local approximation

(4)



## Cubic Spline

- Splines - name given to a flexible piece of wood used by draftsmen to draw curves through points.
- Bend wood piece so that it passes through known points and draw a line through it.
- Most commonly used interpolant used is the cubic spline
- Provides continuity of the function, $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives at the breakpoints.
- Given $\mathrm{n}+1$ points we have n intervals $\left\{x_{i}, f_{i}\right\}, i=1, \ldots, n+1$
$P_{i}(x)=f_{i} i=1, \cdots, n+$
unknown coefficients
- Specifying function values
provides 2 equation
$\begin{array}{ll}\text { Two derivative continuity } \\ \text { equations provides two more }\end{array} \quad P_{i-1}^{\prime}(x)=P_{i}^{\prime}(x) \quad i=2, \cdots, n$
equations provides two more
-Left with two free conditions. Usually chosen so that second derivatives are zero at ends


## Two and more dimensions

- Gradient $\nabla f=\frac{\partial f}{\partial x} \mathbf{e}_{1}+\frac{\partial f}{\partial y} \mathbf{e}_{2}=\frac{\partial f}{\partial x_{i}} \mathbf{e}_{i}$
- Directional derivative in $\nabla f \cdot \mathbf{n}=\frac{\partial f}{\partial x} \mathbf{e}_{1} \cdot \mathbf{n}+\frac{\partial f}{\partial y} \mathbf{e}_{2} \cdot \mathbf{n}=\frac{\partial f}{\partial x_{i}} n$ the direction of a vector $\mathbf{n}$
-Geometric interpretation
$-\nabla f$ is normal to the surface $f(\mathbf{x})=c$
$-\mathbf{n}=\nabla f / \nabla f /$
- Taylor series

$$
\begin{aligned}
& f(\mathbf{x}+\mathbf{h})=f(\mathbf{x})+\mathbf{h} \cdot \nabla f(\mathbf{x})+\frac{1}{2}(\mathbf{h h}): \nabla \nabla f(\mathbf{x})+O\left(|\mathbf{h}|^{3}\right) \\
& f(\mathbf{x}+\mathbf{h})=f(\mathbf{x})+h_{i} \frac{\partial f}{\partial x_{i}}+\frac{1}{2} h_{i} h_{j} \frac{\partial}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}+O\left(|\mathbf{h}|^{\beta}\right)
\end{aligned}
$$

## Finite differences

- Follows a similar pattern. One dimensional partial derivatives are calculated the same way.
- Multiple dimensional operators are computed using multidimensional stencils.



## Tensor product splines

- Splines form a local basis.
- Take products of one dimensional basis functions to make a basis in the higher dimension.


## Derivative of a matrix

Suppose $f(\mathbf{x})$ is a scalar-valued function of $d$ variables $x_{i}, i=1,2, \ldots d$, which we represent as the vector $\mathbf{x}$. Then the derivative or gradient of $f$ with respect to this vector is computed component by component, i.e.

$$
\nabla f(\mathbf{x})=\operatorname{grad} f(\mathbf{x})=\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}=\left(\begin{array}{c}
\frac{\partial f(\mathbf{x})}{\partial x_{1}}  \tag{12}\\
\frac{\partial f(\mathbf{x})}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(\mathbf{x})}{\partial x_{d}}
\end{array}\right)
$$

If we have an $n$-dimensional vector-valued function $\mathbf{f}$ (note the use of boldface) of a $d$-dimensional vector $\mathbf{x}$, we calculate the derivatives and represent them as the Jacobian matrix

$$
\mathbf{J}(\mathbf{x})=\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}} & \ldots & \frac{\partial f_{1}(\mathbf{x})}{\partial x_{d}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}(\mathbf{x})}{\partial x_{1}} & \ldots & \frac{\partial \partial_{n}(\mathbf{x})}{\partial x_{d}}
\end{array}\right)
$$

If this matrix is square, its determinant (Sect. A.2.5) is called simply the Jacobian or

[^0]
## Interpolation

- Polynomial interpolation in multiple dimensions
- Pascals triangle
- Least squares
- Move to a local coordinate system


## NURBS

- Used for precisely specifying n-d data.
- October 3 Tapas Kanungo, NURBS: NonUniform Rational B-Splines


## Jacobian and Hessian

We first recall the use of second derivatives of a scalar function of a scalar $x$ in writing a Taylor series (or Taylor expansion) about a point:
$f(x)=f\left(x_{0}\right)+\left.\frac{d f(x)}{d x}\right|_{x=x_{0}}\left(x-x_{0}\right)+\left.\frac{1}{2!} \frac{d^{2} f(x)}{d x^{2}}\right|_{x=x_{0}}\left(x-x_{0}\right)^{2}+O\left(\left(x-x_{0}\right)^{3}\right) . \quad$ (20)
Analogously, if our scalar-valued $f$ is a instead function of a vector $\mathbf{x}$, we can expand $f(\mathrm{x})$ in a Taylor series around a point $\mathrm{x}_{0}$ :
$f(\mathbf{x})=f\left(\mathbf{x}_{0}\right)+[\underbrace{\frac{\partial f}{\partial \mathbf{x}}}_{\mathbf{J}}]_{\mathbf{x}=\mathbf{x}_{0}}^{t}\left(\mathbf{x}-\mathbf{x}_{0}\right)+\frac{1}{2!}\left(\mathbf{x}-\mathbf{x}_{0}\right)^{t}[\underbrace{\frac{\partial^{2} f}{\partial \mathbf{x}^{2}}}_{\mathbf{H}}]_{\mathbf{x}=\mathbf{x}_{0}}^{t}\left(\mathbf{x}-\mathbf{x}_{0}\right)+O\left(\left\|\mathbf{x}-\mathbf{x}_{0}\right\|^{3}\right),(21)$ where $\mathbf{H}$ is the Hessian matrix, the matrix of second-order derivatives of $f(\cdot)$, here


[^0]:    cassionally the Jace,ien teterminant

