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Linear Algebra for Computer 
Vision - part 2

CMSC 828 D

Outline
• Background and potpourri
• Summation Convention
• Eigenvalues and Eigenvectors
• Rank and Degeneracy
• Gram Schmidt Orthogonalization
• Fredholm Alternative Theorem
• Least Squares Formulation
• Singular Value Decomposition
• Applications

Summary: Linear Spaces
• n dimensional points in a vector space.

– Length, distance, angles
– Dot product (inner product)

• Linear dependence of a set of vectors
• Basis : a collection of n independent vectors so 

that any vector can be expressed as a sum of these 
vectors

• Orthogonality <a,b>=0
• Orthogonal basis: basis vectors satisfy <bi,bj> = 0
• Vector is represented in a particular basis 

(coordinate system) <u,bi> = ui

• Linear Manifolds (M): linear spaces that are subsets of the space 
that are closed under vector addition and scalar multiplication
– If vectors u and v belong to the manifold then 

so do α1 u + α2v
– Manifold must contain zero vector
– Essentially a full linear space of 

smaller dimension.

• Span of a set of vectors: set of all
vectors that can be created by 

scalar multiplication and addition.
• Vectors in the space that are in the rest 

of the space are orthogonal to vectors 
in M. (M⊥ )

• Projection Theorem: any vector in the space X can be written 
only one way in terms of a vector in M and a vector in M⊥.
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Gram Schmidt Orthogonalization
• Given a set of basis vectors (b1,b2, …, bn) construct 

an orthonormal basis (e1,e2, …, en) from it.
– Set e1= b1/|| b1||
– g2= b2 − < b2, e1> e1,         e2 = g2/||g2||
– For k=3, …,n 

gk= bk −Σj< bk, ej> ej,         ek = gk/||gk||

Euclidean 3D
• Three directions with basis vectors i,j,k or 

e1,e2,e3, with ei .ej= δij
• Distance between two vectors u and v is ||u-v||
• Dot product of two vectors u and v is ||u||.||v||  cos θ
• Cross product of two vectors is u×v

– magnitude equal to the area of the 
parallelogram formed by u and v. 

– Magnitude is ||u|| ||v|| sin θ
– Direction is perpendicular to u and v 

so that the three vectors form a right handed system
• Is also written using the permutation symbol εijk
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Summation Convention
• Boldface, transpose symbol and summation signs are 

tiresome. 
– Especially if you have to do things such as differentiation

• Vectors can be written in terms of unit basis vectors
a=a1i+a2j+a3k= a1e1+a2e2+a3e3

• However, even this is clumsy. E.g., in 10 dimensions
a= a1e1+a2e2+…+a10e10 =Σi=1

10 aiei

• Notice that index i occurs twice in the expression.
– Einstein noticed this always occurred, so whenever index was 

repeated twice he avoided writing Σi

– instead of writing Σiaibi, write aibi with the Σi implied

Permutation Symbol
• Permutation symbol. εijk

– If i, j and k are in cyclic order εijk =1  
• Cyclic => (1,2,3) or (2,3,1) or (3,1,2)

– If in anticyclic order εijk =-1
• Anticyclic => (3,2,1) or (2,1,3) or (1,3,2)

– Else, εijk =0
• (1,1,2), (2,3,3), …

• c = a×b      =>   ci = εijkajbk
• ε δ identity  εijk εirs = δjr δks- δjs δkr

– Very useful in proving vector identities
• Indicial notation is also essential for working with tensors

– Tensors are essentially linear operators (matrices or their 
generalizations to higher dimensions)

Examples
• Ai Bi in 2 dimensions: A1B1+A2B2

• Aij Bjk in 3D?  We have 3 indices here (i,j,k), but 
only j is repeated twice and so it is Ai1B1k + Ai2B2k
+Ai3B3k

• Matrix vector product 
Ax = Aijxj,  Atx = Aijxi

• (a × b). c= εijkajbkci
– Using indicial notation can easily show 

a .(b×c) = (a × b). c
• Homework: show a ×(b ×c)=b(a.c)-c(a.b)

Operators / Matrices
• Linear Operator A(α1 u + α2v) = α1 Au + α2 Av
• maps one vector to another

Ax=b
– m×n dimensional matrix A multiplying a n dimensional vector 

x to produce a m dimensional vector b in the dual space
• Square matrix of dimension n by n takes vector to 

another vector in the same space.
• Matrix entries are representations of the matrix using 

basis vectors Aij = < Abj,bi>
• Eigenvectors are characteristic directions of the matrix.
• Matrix decomposition is a factorization of a matrix into 

matrices with specific properties.

Rank and Null Space
• Range of a  m×n dimensional matrix A

Range (A) = {y∈!m: y=Ax for some x ∈!n}
• Null space of A is the set of vectors which it takes to zero.

Null(A) = {x ∈!n : Ax = 0}
• Rank of a matrix is the dimension of its range.

Rank (A) = Rank (At)
– Maximal number of independent rows or columns

• Dimension of     Null(A)+Rank(A) = n

Norm of a matrix
• ||A|| ≥0 ||Ax||≤||A|| ||x||                  
• ||A||F =[aij aij]1/2 Froebenius norm. If A is diagonal 

||A||F=[a11
2+ a22

2+…+ ann
2 ]1/2

• ||A||2 = maxx ||Ax||2/||x||2.  
Can show 2 norm = square root of largest eigenvalue of AtA

Orthogonality
• Two vectors are orthogonal if <u,v>=0
• Orthogonal matrix is composed of 

orthogonal vectors as columns.
p.q=0

• Usually represented as Q
• By definition QQt=I
• Matrices that rotate coordinate axes are 

orthogonal matrices
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Rotation in 2D and 3D
• Rotation through an angle θ

• Rotation + translation

• Rotation in 3D 
– φ about z axis, θ about new x axis, 

ψ about new y axis.
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Rotation matrix
• Rotates a vector represented in one 

orthogonal  coordinate system into a vector 
in another coordinate system.
– Since length of vector should not change
||Qx||=||x|| for all x
– Since Q will not change a vector along 

coordinate directions QQt = I
– Columns of Q are its eigenvectors.
– Eigenvalues are all 1.

Similarity Transforms
• Transforms vector represented in one basis to vector in 

another basis
• Let X={x1,…,xn} and Y={y1,…,yn} be two bases in a n

dimensional space
– There exists a transformation A which takes a vector expressed in 

X to one expressed in Y, 
– Inverse transformation A-1 from Y to X also exists.

• Let B and C be two matrices. Then if
C=A-1B A

B and C represent the same matrix transformation with 
respect to different bases and are called Similar Matrices.

• If A is orthogonal then C=AtBA

andi i i i i ij jAα β β= = =u x u y x

Eigenvalue problem

Remarks: Eigenvalues and Eigenvectors
• Eigenvalues and Eigenvectors of a real symmetric matrix are real.
• In general since eigenvalues are determined by solving a 

polynomial equation, they can be complex.
• Further roots can be repeated ! multiple eigenvectors correspond 

to a single eigenvalue.
• Transforming matrix into eigenbasis yields a diagonal matrix.

QtAQ=ΛΛΛΛ ΛΛΛΛ is a matrix of eigenvalues
– Knowing the eigenvectors we can solve an equation Ax=b. Rewrite 

it as  
QtAQQtx=Qtb ΛΛΛΛy=f

– Where y=Qtx and f= Qtb 
– Can get x from y x=(Qt)-1y = Qy

• Determinant is unchanged by an orthogonal transformation. 
• Determinant: Det(A) = λ1 λ2 …λn

When is Ax=b Solvable?
• When does the equation Ax=b have a solution?

– Usual answer is if A is invertible
– However in many situations where A is singular there still may 

be a meaningful solution.
• Fredholm Alternative Theorem.

– Look at the homogeneous systems 
Ax=0 (1) A*y=0(2)

– If (1) has only the trivial solution then so does (2). This occurs 
only if det(A) ≠ 0 (if A is invertible).
Then Ax=b has a unique solution x=A-1b

– If (1) has nontrivial solutions then det(A)=0.
• This means rows of A have interdependencies. In this case b must 

reflect those dependencies
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• If 2nd row of A is a sum of the 1st and 3rd rows, then b2=b1+b3

• If there are k independent solutions to equation (1) then A has a k
dimensional nullspace.

• A* also has a k dimensional nullspace (but with different solutions). 
– Let these solutions be n*1, n*2, …, n*k

• For Ax=b can have solutions iff
<b,n*j>=0 j = 1,…,k

• b must be orthogonal to the nullspace of A*.

• Any solution with y2=-y1 and y3=y1 satisfies the adjoint equation
or the nullspace of A* is  α [1,-1,1]t

• Here <b,n*1>= -1(≠0). So equation has no solution. 
• However if b=[1, 2, 1]t we would have a solution
• General solution is x = x~+ckn*k where x~ is a particular solution.
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Least Squares
• Number of equations and unknowns may not match
• Look for solution by maximizing ||Ax - b||
• (Aijxj-bi).(Aikxk-bi) with respect to xl
• Recall 

• Same as the solution of AtAx=Atb
• Shows the power of the index notation

– See again the appearance of AtA
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Singular Value Decomposition
• Chief tool for dealing with m by n systems and singular 

systems.
• Singular values: Non negative square roots of the 

eigenvalues of AtA. Denoted σi, i=1,…,n
– AtA is symmetric " eigenvalues and singular values are real.

• SVD: If A is a real  m by n matrix then there exist 
orthogonal matrices U (∈!m×m) and V (∈!n×n) such 
that UtAV= Σ =diag(σ1, σ2,…, σp) p=min{m,n}

A= U Σ Vt 

• Geometrically,  singular values are the lengths of the 
hyperellipsoid defined by E={Ax: ||x||2=1}

• Singular values arranged in decreasing order.

Properties of the SVD
• Suppose we know the singular values of A and we know 

r are non zero
σ1≥ σ2 ≥ … ≥ σr ≥ σr+1 = … = σp=0

– Rank(A) = r.  
– Null(A) = span{vr+1,…,vn}
– Range(A)=span{u1,…,ur}

• ||A||F
2= σ1

2+ σ2
2+…+ σp

2 ||A||2= σ1

• Numerical rank: If k singular values of A are larger than 
a given number ε. Then the ε rank of A is k.

• Distance of a matrix  of rank n from being a matrix of 
rank k = σk+1

Why is it useful?
• Square matrix may be singular due to round-off errors. 

Can compute a “regularized” solution
– x=A-1b=(U Σ Vt )-1b =

• If σi is small (vanishes) the solution “blows up”
• Given a tolerance ε we  can determine a solution that is 

“closest” to the solution of the original equation, but that 
does not “blow up”

• Least squares solution is the x that satisfies 
AtAx=Atb 

• can be effectively solved using SVD
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