Linear Algebra for Computer Vision - part 2
CMSC 828 D

Outline

- Background and potpourri
- Summation Convention
- Eigenvalues and Eigenvectors
- Rank and Degeneracy
- Gram Schmidt Orthogonalization
- Fredholm Alternative Theorem
- Least Squares Formulation
- Singular Value Decomposition
- Applications

Summary: Linear Spaces

- n dimensional points in a vector space.
- Length, distance, angles
- Dot product (inner product)
- Linear dependence of a set of vectors
- Basis : a collection of n independent vectors so that any vector can be expressed as a sum of these vectors
- Orthogonality $<\mathbf{a}, \mathbf{b}>=0$
- Orthogonal basis: basis vectors satisfy $\left\langle\mathbf{b}_{\mathbf{i}}, \mathbf{b}_{\mathbf{j}}\right\rangle=0$
- Vector is represented in a particular basis (coordinate system) $<\mathbf{u}, \mathbf{b}_{i}>=u_{i}$
- Linear Manifolds (M): linear spaces that are subsets of the space that are closed under vector addition and scalar multiplication
- If vectors \mathbf{u} and \mathbf{v} belong to the manifold then so do $\alpha_{1} \mathbf{u}+\alpha_{2} \mathbf{v}$
- Manifold must contain zero vector
- Essentially a full linear space of smaller dimension.
- Span of a set of vectors: set of all vectors that can be created by scalar multiplication and addition.
- Vectors in the space that are in the rest of the space are orthogonal to vectors in M . $\left(\mathrm{M}^{\perp}\right)$

- Projection Theorem: any vector in the space X can be written only one way in terms of a vector in M and a vector in M^{\perp}.

Gram Schmidt Orthogonalization

- Given a set of basis vectors $\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{\mathrm{n}}\right)$ construct an orthonormal basis $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{\mathrm{n}}\right)$ from it.
- Set $\mathbf{e}_{1}=\mathbf{b}_{1} /\left\|\mathbf{b}_{1}\right\|$
$-\mathbf{g}_{2}=\mathbf{b}_{2}-<\mathbf{b}_{2}, \mathbf{e}_{1}>\mathbf{e}_{1}, \quad \mathbf{e}_{2}=\mathbf{g}_{2} /\left\|\mathbf{g}_{2}\right\|$
- For $\mathrm{k}=3, \ldots, \mathrm{n}$

$$
\mathbf{g}_{\mathrm{k}}=\mathbf{b}_{\mathrm{k}}-\Sigma_{\mathrm{j}}<\mathbf{b}_{\mathrm{k}}, \mathbf{e}_{\mathrm{j}}>\mathbf{e}_{\mathrm{j}}, \quad \mathbf{e}_{\mathrm{k}}=\mathbf{g}_{\mathrm{k}} /\left\|\mathbf{g}_{\mathrm{k}}\right\|
$$

Euclidean 3D

- Three directions with basis vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ or $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$, with $\mathbf{e}_{\mathrm{i}} \cdot \mathbf{e}_{\mathrm{j}}=\delta_{i j}$
- Distance between two vectors \mathbf{u} and \mathbf{v} is $\|\mathbf{u} \mathbf{- v}\|$
- Dot product of two vectors \mathbf{u} and \mathbf{v} is $\|\mathbf{u}\| .\|\mathbf{v}\| \cos \theta$
- Cross product of two vectors is $\mathbf{u} \times \mathbf{v}$
- magnitude equal to the area of the parallelogram formed by \mathbf{u} and \mathbf{v}.
- Magnitude is $\|\mathrm{u}\|\|\mathrm{v}\| \sin \theta$
$\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|$
- Direction is perpendicular to \mathbf{u} and \mathbf{v} so that the three vectors form a right handed system
- Is also written using the permutation symbol $\varepsilon_{\mathrm{ijk}}$

Summation Convention

- Boldface, transpose symbol and summation signs are tiresome.
- Especially if you have to do things such as differentiation
- Vectors can be written in terms of unit basis vectors

$$
\mathbf{a}=\mathrm{a}_{1} \mathbf{i}+\mathrm{a}_{2} \mathbf{j}+\mathrm{a}_{3} \mathbf{k}=\mathrm{a}_{1} \mathbf{e}_{1}+\mathrm{a}_{2} \mathbf{e}_{2}+\mathrm{a}_{3} \mathbf{e}_{3}
$$

- However, even this is clumsy. E.g., in 10 dimensions

$$
\mathbf{a}=\mathrm{a}_{1} \mathbf{e}_{1}+\mathrm{a}_{2} \mathbf{e}_{2}+\ldots+\mathrm{a}_{10} \mathbf{e}_{10}=\sum_{\mathrm{i}=1}{ }^{10} \mathrm{a}_{\mathrm{i}} \mathbf{e}_{\mathrm{i}}
$$

- Notice that index i occurs twice in the expression.
- Einstein noticed this always occurred, so whenever index was repeated twice he avoided writing Σ_{i}
- instead of writing $\Sigma_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}$, write $\mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}$ with the Σ_{i} implied

Permutation Symbol

- Permutation symbol $\varepsilon_{i j k}$
- If i, j and k are in cyclic order $\varepsilon_{i \mathrm{ik}}=1$
- Cyclic $=>(1,2,3)$ or $(2,3,1)$ or $(3,1,2)$
- If in anticyclic order $\varepsilon_{i j k}=-1$
- Anticyclic $=>(3,2,1)$ or $(2,1,3)$ or $(1,3,2)$
- Else, $\varepsilon_{i j \mathrm{kj}}=0$
- (1,1,2), (2,3,3), \ldots
- $\mathbf{c}=\mathbf{a} \times \mathbf{b} \quad \Rightarrow c_{i}=\varepsilon_{i j k} a_{j} b_{k}$
- $\varepsilon \delta$ identity $\varepsilon_{\mathrm{ijk}} \varepsilon_{\mathrm{irs}}=\delta_{\mathrm{jr}} \delta_{\mathrm{ks}}-\delta_{\mathrm{js}} \delta_{\mathrm{kr}}$
- Very useful in proving vector identities
- Indicial notation is also essential for working with tensors
- Tensors are essentially linear operators (matrices or their generalizations to higher dimensions)

Examples

- $A_{i} B_{i}$ in 2 dimensions: $\mathrm{A}_{1} \mathrm{~B}_{1}+\mathrm{A}_{2} \mathrm{~B}_{2}$
- $A_{i j} B_{j k}$ in 3 D ? We have 3 indices here (i, j, k), but only j is repeated twice and so it is $\mathrm{A}_{\mathrm{i} 1} \mathrm{~B}_{1 \mathrm{k}}+\mathrm{A}_{\mathrm{i} 2} \mathrm{~B}_{2 \mathrm{k}}$ $+\mathrm{A}_{\mathrm{i} 3} \mathrm{~B}_{3 \mathrm{k}}$
- Matrix vector product

$$
\mathbf{A x}=\mathrm{A}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}}, \quad \mathbf{A}^{\mathrm{t}} \mathbf{x}=\mathrm{A}_{\mathrm{ij}} \mathrm{x}_{\mathrm{i}}
$$

- $(\mathbf{a} \times \mathbf{b}) . \mathbf{c}=\varepsilon_{i \mathrm{ijk}} \mathrm{a}_{\mathrm{j}} \mathrm{b}_{\mathrm{k}} \mathrm{c}_{\mathrm{i}}$
- Using indicial notation can easily show
$\mathbf{a} .(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) . \mathbf{c}$
- Homework: show $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{b}(\mathbf{a} . \mathbf{c})-\mathbf{c}(\mathbf{a} . \mathbf{b})$

Operators / Matrices

- Linear Operator $\mathbf{A}\left(\alpha_{1} \mathbf{u}+\alpha_{2} \mathbf{v}\right)=\alpha_{1} \mathbf{A u}+\alpha_{2} \mathbf{A v}$
- maps one vector to another

$\mathbf{A x}=\mathbf{b}$

- $m \times n$ dimensional matrix A multiplying a n dimensional vector \mathbf{x} to produce a m dimensional vector \mathbf{b} in the dual space
- Square matrix of dimension n by n takes vector to another vector in the same space.
- Matrix entries are representations of the matrix using basis vectors $A_{\mathrm{ij}}=<\mathbf{A} \mathbf{b}_{\mathrm{j}}, \mathbf{b}_{\mathrm{i}}>$
- Eigenvectors are characteristic directions of the matrix.
- Matrix decomposition is a factorization of a matrix into matrices with specific properties.

Norm of a matrix

- $\|\mathbf{A}\| \geq 0 \quad\|\mathbf{A x}\| \leq\|\mathbf{A}\|\|\mathbf{x}\|$
- $\|\mathbf{A}\|_{F}=\left[a_{i j} a_{i j}\right]^{1 / 2}$ Froebenius norm. If \mathbf{A} is diagonal $\|\mathbf{A}\|_{F}=\left[a_{11}{ }^{2}+a_{22}{ }^{2}+\ldots+a_{n n}{ }^{2}\right]^{1 / 2}$
- $\|\mathbf{A}\|_{2}=\max _{\mathbf{x}}\|\mathbf{A} \mathbf{x}\|_{2} /\|\mathbf{x}\|_{2}$.

Can show 2 norm = square root of largest eigenvalue of $\mathbf{A}^{t} \mathbf{A}$

Rank and Null Space

- Range of a $m \times n$ dimensional matrix \mathbf{A} Range $(\mathbf{A})=\left\{\mathbf{y} \in \mathbb{R}^{m}: \mathbf{y}=\mathbf{A x}\right.$ for some $\left.\mathbf{x} \in \mathbb{R}^{n}\right\}$
- Null space of \mathbf{A} is the set of vectors which it takes to zero.

$$
\operatorname{Null}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A x}=\mathbf{0}\right\}
$$

- Rank of a matrix is the dimension of its range. $\operatorname{Rank}(\mathbf{A})=\operatorname{Rank}\left(\mathbf{A}^{\mathrm{t}}\right)$
- Maximal number of independent rows or columns
- $\operatorname{Dimension}$ of $\operatorname{Null}(\mathbf{A})+\operatorname{Rank}(\mathbf{A})=n$

Orthogonality

- Two vectors are orthogonal if $\langle\mathbf{u}, \mathbf{v}\rangle=0$
- Orthogonal matrix is composed of $\left[\begin{array}{llll}q_{1} & p_{1} & \cdots & r_{1} \\ q_{2} & l_{2}\end{array}\right]$ orthogonal vectors as columns.
p. $\mathbf{q}=0$
- Usually represented as \mathbf{Q} $\left[\begin{array}{cccc}q_{1} & p_{1} & \cdots & r_{1} \\ q_{2} & p_{2} & \vdots & r_{2} \\ \vdots & \vdots & \ddots & \vdots \\ q_{n} & p_{n} & \cdots & r_{n}\end{array}\right]$
- By definition $\mathbf{Q Q}^{\mathbf{t}}=\mathbf{I}$
- Matrices that rotate coordinate axes are orthogonal matrices

Rotation in 2D and 3D

- Rotation through an angle θ

- Rotation + translation

- Rotation in 3D
$-\phi$ about z axis, θ about new x axis, ψ about new y axis.
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]=\left[\begin{array}{ccc}\cos \psi \cos \phi-\cos \theta \sin \phi \sin \psi & \cos \psi \sin \phi+\cos \theta \cos \phi \sin \psi & \sin \psi \sin \theta \\ -\sin \psi \cos \phi-\cos \theta \sin \phi \cos \psi & -\sin \psi \sin \phi+\cos \theta \cos \phi \cos \psi & \cos \psi \sin \theta \\ \sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

Similarity Transforms

- Transforms vector represented in one basis to vector in another basis
- Let $\mathrm{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right\}$ and $\mathrm{Y}=\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{\mathrm{n}}\right\}$ be two bases in a n dimensional space
- There exists a transformation \mathbf{A} which takes a vector expressed in

X to one expressed in Y ,

- Inverse transformation \mathbf{A}^{-1} from Y to X also exists.

$$
\mathbf{u}=\alpha_{i} \mathbf{x}_{i} \quad \text { and } \quad \mathbf{u}=\beta_{i} \mathbf{y}_{i}=\beta_{i} A_{i j} \mathbf{x}_{j}
$$

- Let \mathbf{B} and \mathbf{C} be two matrices. Then if

$\mathbf{C}=\mathbf{A}^{-1} \mathbf{B} \mathbf{A}$

\mathbf{B} and \mathbf{C} represent the same matrix transformation with respect to different bases and are called Similar Matrices.

- If \mathbf{A} is orthogonal then $\mathbf{C}=\mathbf{A}^{\boldsymbol{}} \mathbf{B A}$

Rotation matrix

- Rotates a vector represented in one orthogonal coordinate system into a vector in another coordinate system.
- Since length of vector should not change $\|\mathbf{Q x}\|=\|\mathbf{x}\|$ for all \mathbf{x}
- Since Q will not change a vector along coordinate directions $\quad \mathbf{Q Q}^{t}=\mathbf{I}$
- Columns of Q are its eigenvectors.
- Eigenvalues are all 1.
- If $2^{\text {nd }}$ row of A is a sum of the $1^{\text {st }}$ and $3^{\text {rd }}$ rows, then $b_{2}=b_{1}+b_{3}$
- If there are k independent solutions to equation (1) then \mathbf{A} has a k dimensional nullspace.
- \mathbf{A}^{*} also has a k dimensional nullspace (but with different solutions).
- Let these solutions be $\mathbf{n}_{*_{l}}, \mathbf{n}_{*_{2}}, \ldots, \mathbf{n}_{*_{k}}$
- For $\mathbf{A x}=\mathbf{b}$ can have solutions iff

$$
<\mathbf{b}, \mathbf{n}_{*_{j}}>=0
$$

$$
j=1, \ldots, k
$$

- b must be orthogonal to the nullspace of \mathbf{A}^{*}.

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & 1 \\
1 & -2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right] \text { or } \mathbf{A x}=\mathbf{b} \quad\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & -1 & -2 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- Any solution with $y_{2}=-y_{1}$ and $y_{3}=y_{1}$ satisfies the adjoint equation or the nullspace of \mathbf{A}^{*} is $\alpha[1,-1,1]^{t}$
- Here $<\mathbf{b}, \mathbf{n}_{*_{1}}>=-1(\neq 0)$. So equation has no solution.
- However if $\mathbf{b}=[1,2,1]^{\mathrm{t}}$ we would have a solution
- General solution is $\mathbf{x}=\mathbf{x}^{\sim}+c_{k} \mathbf{n}_{*_{k}}$ where \mathbf{x}^{\sim} is a particular solution.

Singular Value Decomposition

- Chief tool for dealing with m by n systems and singular systems.
- Singular values: Non negative square roots of the eigenvalues of $\mathbf{A}^{\mathrm{t}} \mathbf{A}$. Denoted $\sigma_{i}, i=1, \ldots, n$
$-\mathbf{A}^{\boldsymbol{t}} \mathbf{A}$ is symmetric \rightarrow eigenvalues and singular values are real.
- SVD: If \mathbf{A} is a real m by n matrix then there exist orthogonal matrices $\mathbf{U}\left(\in \mathbb{R}^{m \times m}\right)$ and $\mathbf{V}\left(\in \mathbb{R}^{n \times n}\right)$ such that $\mathbf{U}^{\mathbf{t}} \mathbf{A} \mathbf{V}=\Sigma=\operatorname{diag}\left(\sigma_{l}, \sigma_{2}, \ldots, \sigma_{p}\right) \quad p=\min \{m, n\}$

$$
\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\mathbf{t}}
$$

- Geometrically, singular values are the lengths of the hyperellipsoid defined by $\mathrm{E}=\left\{\mathbf{A x}:\|\mathbf{x}\|_{2}=1\right\}$
- Singular values arranged in decreasing order.

Least Squares

- Number of equations and unknowns may not match
- Look for solution by maximizing $\|\mathbf{A x}-\mathbf{b}\|$
- $\left(A_{i j} x_{j}-b_{j}\right) \cdot\left(A_{i k} x_{k}-b_{i}\right)$ with respect to x_{l}
- Recall $\frac{\partial x_{i}}{\partial x_{i}}=\delta_{i}$

$$
\frac{\partial}{\partial x_{l}}\left(A_{i j} x_{j}-b_{i}\right) \cdot\left(A_{i k} x_{k}-b_{i}\right)=0
$$

$\left(A_{i j} \delta_{j l}\right) \cdot\left(A_{i k} x_{k}-b_{i}\right)+\left(A_{i j} x_{j}-b_{i}\right) \cdot\left(A_{i k} \delta_{k l}\right)=0$
$A_{i l} \bullet\left(A_{i k} x_{k}-b_{i}\right)+\left(A_{i j} x_{j}-b_{i}\right) \cdot A_{i l}=2\left(A_{i l} A_{i k} x_{k}-A_{i l} b_{i}\right)=0$
$A_{i l} A_{i k} x_{k}=A_{i l} b_{i}$

- Same as the solution of $\mathbf{A}^{t} \mathbf{A x}=\mathbf{A}^{t} \mathbf{b}$
- Shows the power of the index notation
- See again the appearance of $\mathbf{A}^{\dagger} \mathbf{A}$

Properties of the SVD

- Suppose we know the singular values of \mathbf{A} and we know r are non zero

$$
\sigma_{l} \geq \sigma_{2} \geq \ldots \geq \sigma_{r} \geq \sigma_{r+1}=\ldots=\sigma_{p}=0
$$

$-\operatorname{Rank}(\mathbf{A})=r$.
$-\operatorname{Null}(\mathbf{A})=\operatorname{span}\left\{\mathbf{v}_{\mathbf{r}+1}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$
$-\operatorname{Range}(\mathbf{A})=\operatorname{span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$

- $\|\boldsymbol{A}\|_{F}{ }^{2}=\sigma_{l}{ }^{2}+\sigma_{2}{ }^{2}+\ldots+\sigma_{p}{ }^{2} \quad\|A\|_{2}=\sigma_{I}$
- Numerical rank: If k singular values of A are larger than a given number ε. Then the ε rank of A is k.
- Distance of a matrix of rank n from being a matrix of $\operatorname{rank} k=\sigma_{k+1}$

Why is it useful?

- Square matrix may be singular due to round-off errors. Can compute a "regularized" solution
- If σ_{i} is small (vanishes) the solution "blows up"
- Given a tolerance ε we can determine a solution that is "closest" to the solution of the original equation, but that does not "blow up" $\mathbf{x}_{r}=\sum_{i=1}^{k} \frac{\mathbf{u}^{\prime} \mathbf{b}}{\sigma_{i}} \mathbf{v}_{i} \quad \sigma_{k}>\varepsilon, \sigma_{k+1} \leq \varepsilon$
- Least squares solution is the x that satisfies $\mathbf{A}^{t} \mathbf{A x}=\mathbf{A}^{t} \mathbf{b}$
- can be effectively solved using SVD

