Linear Algebra for Computer Vision - part 2

CMSC 828 D

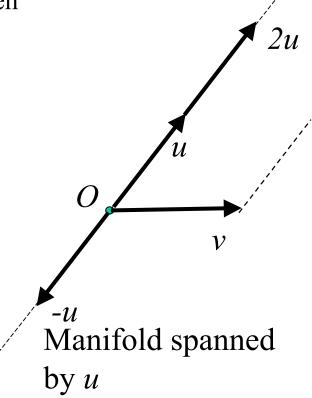
Outline

- Background and potpourri
- Summation Convention
- Eigenvalues and Eigenvectors
- Rank and Degeneracy
- Gram Schmidt Orthogonalization
- Fredholm Alternative Theorem
- Least Squares Formulation
- Singular Value Decomposition
- Applications

Summary: Linear Spaces

- *n* dimensional points in a vector space.
 - Length, distance, angles
 - Dot product (inner product)
- Linear dependence of a set of vectors
- Basis : a collection of n independent vectors so that any vector can be expressed as a sum of these vectors
- Orthogonality <**a**,**b**>=0
- Orthogonal basis: basis vectors satisfy $\langle \mathbf{b}_i, \mathbf{b}_i \rangle = 0$
- Vector is represented in a particular basis (coordinate system) $\langle \mathbf{u}, \mathbf{b}_i \rangle = \mathbf{u}_i$

- Linear Manifolds (M): linear spaces that are subsets of the space that are closed under vector addition and scalar multiplication
 - If vectors **u** and **v** belong to the manifold then so do α_1 **u** + α_2 **v**
 - Manifold must contain zero vector
 - Essentially a full linear space of smaller dimension.
- Span of a set of vectors: set of all vectors that can be created by scalar multiplication and addition.
- Vectors in the space that are in the rest of the space are orthogonal to vectors in M. (M^{\perp})



• Projection Theorem: any vector in the space X can be written only one way in terms of a vector in M and a vector in M^{\perp} .

Gram Schmidt Orthogonalization

- Given a set of basis vectors (**b**₁, **b**₂, ..., **b**_n) construct an orthonormal basis (**e**₁, **e**₂, ..., **e**_n) from it.
 - Set $\mathbf{e}_1 = \mathbf{b}_1 / || \mathbf{b}_1 ||$
 - $\mathbf{g}_2 = \mathbf{b}_2 \langle \mathbf{b}_2, \mathbf{e}_1 \rangle \mathbf{e}_1, \qquad \mathbf{e}_2 = \mathbf{g}_2 / ||\mathbf{g}_2||$ - For k=3, ...,n

$$\mathbf{g}_k = \mathbf{b}_k - \Sigma_j < \mathbf{b}_k, \ \mathbf{e}_j > \mathbf{e}_j, \qquad \mathbf{e}_k = \mathbf{g}_k / \|\mathbf{g}_k\|$$

Euclidean 3D

- Three directions with basis vectors **i**,**j**,**k** or $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \text{ with } \mathbf{e}_i \cdot \mathbf{e}_i = \delta_{ii}$
- Distance between two vectors \mathbf{u} and \mathbf{v} is $\|\mathbf{u}-\mathbf{v}\|$
- Dot product of two vectors **u** and **v** is $||\mathbf{u}|| \cdot ||\mathbf{v}|| \cos \theta$
- Cross product of two vectors is **u**×**v**
 - magnitude equal to the area of the parallelogram formed by **u** and **v**. $\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$

 - Direction is perpendicular to **u** and **v** so that the three vectors form a right handed system
- Is also written using the permutation symbol ε_{iik}

Summation Convention

- Boldface, transpose symbol and summation signs are tiresome.
 - Especially if you have to do things such as differentiation
 - Vectors can be written in terms of unit basis vectors
 a=a₁i+a₂j+a₃k=a₁e₁+a₂e₂+a₃e₃
- However, even this is clumsy. E.g., in 10 dimensions

$$\mathbf{a} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + \ldots + a_{10} \mathbf{e}_{10} = \sum_{i=1}^{10} a_i \mathbf{e}_i$$

- Notice that index *i* occurs twice in the expression.
 - Einstein noticed this always occurred, so whenever index was repeated twice he avoided writing Σ_i
 - instead of writing $\Sigma_i a_i b_i$, write $a_i b_i$ with the Σ_i implied

Permutation Symbol

- Permutation symbol ε_{ijk}
 - If i, j and k are in cyclic order $\varepsilon_{ijk} = 1$
 - Cyclic \Rightarrow (1,2,3) or (2,3,1) or (3,1,2)
 - If in anticyclic order ε_{ijk} =-1
 - Anticyclic \Rightarrow (3,2,1) or (2,1,3) or (1,3,2)
 - Else, $\varepsilon_{ijk}=0$
 - (1,1,2), (2,3,3), ...
- $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ => $\mathbf{c}_i = \varepsilon_{ijk} \mathbf{a}_j \mathbf{b}_k$
- $\varepsilon \, \delta \, \text{identity} \, \varepsilon_{ijk} \varepsilon_{irs} = \delta_{jr} \, \delta_{ks} \, \delta_{js} \, \delta_{kr}$
 - Very useful in proving vector identities
- Indicial notation is also essential for working with tensors
 - Tensors are essentially linear operators (matrices or their generalizations to higher dimensions)

Examples

- $A_i B_i$ in 2 dimensions: $A_1 B_1 + A_2 B_2$
- $A_{ij} B_{jk}$ in 3D? We have 3 indices here (i,j,k), but only *j* is repeated twice and so it is $A_{i1}B_{1k} + A_{i2}B_{2k}$ $+A_{i3}B_{3k}$
- Matrix vector product

$$\mathbf{A}\mathbf{x} = \mathbf{A}_{ij}\mathbf{x}_{j,} \qquad \qquad \mathbf{A}^{\mathbf{t}}\mathbf{x} = \mathbf{A}_{ij}\mathbf{x}_{i}$$

• $(\mathbf{a} \times \mathbf{b})$. $\mathbf{c} = \varepsilon_{ijk} a_j b_k c_i$

- Using indicial notation can easily show

 $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$

• Homework: show **a** ×(**b** ×**c**)=**b**(**a**.**c**)-**c**(**a**.**b**)

Operators / Matrices

- Linear Operator $\mathbf{A}(\alpha_1 \mathbf{u} + \alpha_2 \mathbf{v}) = \alpha_1 \mathbf{A}\mathbf{u} + \alpha_2 \mathbf{A}\mathbf{v}$
- maps one vector to another

Ax=b

- $m \times n$ dimensional matrix **A** multiplying a *n* dimensional vector **x** to produce a *m* dimensional vector **b** in the dual space
- Square matrix of dimension *n* by *n* takes vector to another vector in the same space.
- Matrix entries are representations of the matrix using basis vectors $A_{ij} = \langle \mathbf{A}\mathbf{b}_j, \mathbf{b}_j \rangle$
- Eigenvectors are characteristic directions of the matrix.
- Matrix decomposition is a factorization of a matrix into matrices with specific properties.

Norm of a matrix

- $||\mathbf{A}|| \ge 0$ $||\mathbf{A}\mathbf{x}|| \le ||\mathbf{A}|| ||\mathbf{x}||$
- $\|\mathbf{A}\|_{F} = [a_{ij} a_{ij}]^{1/2}$ Froebenius norm. If **A** is diagonal $\|\mathbf{A}\|_{F} = [a_{11}^{2} + a_{22}^{2} + ... + a_{nn}^{2}]^{1/2}$
- $||\mathbf{A}||_2 = \max_{\mathbf{x}} ||\mathbf{A}\mathbf{x}||_2 / ||\mathbf{x}||_2$. Can show 2 norm = square root of largest eigenvalue of $\mathbf{A}^t \mathbf{A}$

Rank and Null Space

- Range of a $m \times n$ dimensional matrix **A** Range (**A**) = { $\mathbf{y} \in \mathbb{R}^m$: \mathbf{y} =**Ax** for some $\mathbf{x} \in \mathbb{R}^n$ }
- Null space of **A** is the set of vectors which it takes to zero. Null(**A**) = $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{0}\}$
- Rank of a matrix is the dimension of its range.
 Rank (A) = Rank (A^t)

- Maximal number of independent rows **or** columns

• Dimension of Null(A)+Rank(A) = n

Orthogonality

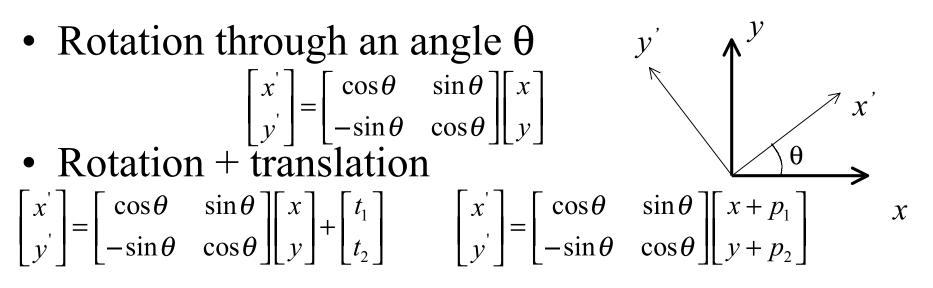
- Two vectors are orthogonal if <**u**,**v**>=0
- Orthogonal matrix is composed of orthogonal vectors as columns.

p.**q**=0

- Usually represented as ${\bf Q}$
- By definition **QQ**^t=**I**
- Matrices that rotate coordinate axes are orthogonal matrices

 $\begin{bmatrix} q_1 & p_1 & \cdots & r_1 \\ q_2 & p_2 & \vdots & r_2 \\ \vdots & \vdots & \ddots & \vdots \\ q_n & p_n & \cdots & r_n \end{bmatrix}$

Rotation in 2D and 3D



• Rotation in 3D

 $- \phi \text{ about } z \text{ axis, } \theta \text{ about new } x \text{ axis,} \\ \psi \text{ about new y axis.}$

$$\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} \cos\psi\cos\phi - \cos\theta\sin\phi\sin\psi & \cos\psi\sin\phi + \cos\theta\cos\phi\sin\psi & \sin\psi\sin\theta\\ -\sin\psi\cos\phi - \cos\theta\sin\phi\cos\psi & -\sin\psi\sin\phi + \cos\theta\cos\phi\cos\psi & \cos\psi\sin\theta\\ \sin\theta\sin\phi & -\sin\theta\cos\phi & \cos\theta \end{bmatrix} \begin{bmatrix} x\\y\\z \end{bmatrix}$$

Rotation matrix

- Rotates a vector represented in one orthogonal coordinate system into a vector in another coordinate system.
 - Since length of vector should not change
 - $||\mathbf{Q}\mathbf{x}|| = ||\mathbf{x}||$ for all \mathbf{x}
 - Since Q will not change a vector along coordinate directions $\mathbf{Q}\mathbf{Q}^t = \mathbf{I}$
 - Columns of Q are its eigenvectors.
 - Eigenvalues are all 1.

Similarity Transforms

- Transforms vector represented in one basis to vector in another basis
- Let X={x₁,...,x_n} and Y={y₁,...,y_n} be two bases in a *n* dimensional space
 - There exists a transformation A which takes a vector expressed in X to one expressed in Y,
 - Inverse transformation A^{-1} from Y to X also exists.

 $\mathbf{u} = \boldsymbol{\alpha}_i \mathbf{x}_i$ and $\mathbf{u} = \boldsymbol{\beta}_i \mathbf{y}_i = \boldsymbol{\beta}_i A_{ij} \mathbf{x}_j$

• Let **B** and **C** be two matrices. Then if

$C = A^{-1}B A$

B and **C** represent the same matrix transformation with respect to different bases and are called Similar Matrices.

• If **A** is orthogonal then **C**=**A**^{*t*}**BA**

Eigenvalue problem $1. x \neq 0$,

2. $Ax = \lambda x$.

- λ is an eigenvalue and x is an eigenvector.
- If $y^{\mathrm{H}}A = \lambda y^{\mathrm{H}}$, then (λ, y) is a left eigenpair
- If $Ax = \lambda x$, then $(\lambda I A)x = 0$. Hence $(\lambda I A)$ is singular.
- The eigenvalues of A are the roots of the *charac*teristic equation

$$p(\lambda) \equiv \det(\lambda I - A) = 0.$$

- No distinction between left and right eigenvalues.
- The *characteristic polynomial* p can be factored in the form

$$p(\lambda) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_k)^{m_k},$$

where the numbers λ_i are distinct and

$$m_1 + m_2 + \cdots + m_k = n.$$

m_i is the algebraic multiplicity of λ_i.

Remarks: Eigenvalues and Eigenvectors

- Eigenvalues and Eigenvectors of a real symmetric matrix are real.
- In general since eigenvalues are determined by solving a polynomial equation, they can be complex.
- Further roots can be repeated → multiple eigenvectors correspond to a single eigenvalue.
- Transforming matrix into eigenbasis yields a diagonal matrix.

 $\mathbf{Q}^{\mathsf{t}}\mathbf{A}\mathbf{Q}=\mathbf{\Lambda}$ $\mathbf{\Lambda}$ is a matrix of eigenvalues

Knowing the eigenvectors we can solve an equation Ax=b. Rewrite it as

 $Q^{t}AQQ^{t}x=Q^{t}b \Lambda y=f$

- Where $y=Q^tx$ and $f=Q^tb$
- Can get x from y $x=(Q^t)^{-1}y = Qy$
- Determinant is unchanged by an orthogonal transformation.
- Determinant: $Det(\mathbf{A}) = \lambda_1 \lambda_2 \dots \lambda_n$

When is **Ax=b** Solvable?

- When does the equation **Ax=b** have a solution?
 - Usual answer is if **A** is invertible
 - However in many situations where A is singular there still may be a meaningful solution.
- Fredholm Alternative Theorem.
 - Look at the homogeneous systems

Ax=0 (1) $A^*y=0(2)$

- If (1) has only the trivial solution then so does (2). This occurs only if det(A) ≠ 0 (if A is invertible).
 Then Ax=b has a unique solution x=A⁻¹b
- If (1) has nontrivial solutions then det(A)=0.
 - This means rows of **A** have interdependencies. In this case **b** must reflect those dependencies

- If 2^{nd} row of A is a sum of the 1^{st} and 3^{rd} rows, then $b_2 = b_1 + b_3$
- If there are *k* independent solutions to equation (1) then **A** has a *k* dimensional *nullspace*.
- A* also has a k dimensional nullspace (but with different solutions).
 Let these solutions be n_{*1}, n_{*2}, ..., n_{*k}
- For **Ax=b** can have solutions iff

$$< \mathbf{b}, \mathbf{n}_{*j} >= 0$$
 $j = 1, ..., k$

• **b** must be orthogonal to the nullspace of **A**^{*}.

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 1 & -2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \text{ or } \mathbf{A}\mathbf{x} = \mathbf{b} \qquad \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & -2 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- Any solution with $y_2=-y_1$ and $y_3=y_1$ satisfies the adjoint equation or the nullspace of \mathbf{A}^* is $\alpha [1,-1,1]^t$
- Here $\langle \mathbf{b}, \mathbf{n}_{*l} \rangle = -1 \neq 0$. So equation has no solution.
- However if $\mathbf{b} = [1, 2, 1]^t$ we would have a solution
- General solution is $\mathbf{x} = \mathbf{x}^{\sim} + \mathbf{c}_k \mathbf{n}_{*k}$ where \mathbf{x}^{\sim} is a particular solution.

Least Squares

- Number of equations and unknowns may not match
- Look for solution by maximizing ||Ax b||
- $(A_{ij}x_j-b_i).(A_{ik}x_k-b_i)$ with respect to x_l
- Recall $\frac{\partial x_i}{\partial x_l} = \delta_{il}$ $\frac{\partial}{\partial x_l} (A_{ij}x_j - b_i) \cdot (A_{ik}x_k - b_i) = 0$ $(A_{ij}\delta_{jl}) \cdot (A_{ik}x_k - b_i) + (A_{ij}x_j - b_i) \cdot (A_{ik}\delta_{kl}) = 0$ $A_{il} \cdot (A_{ik}x_k - b_i) + (A_{ij}x_j - b_i) \cdot A_{il} = 2(A_{il}A_{ik}x_k - A_{il}b_i) = 0$ $A_{il}A_{ik}x_k = A_{il}b_i$
 - Same as the solution of $A^tAx = A^tb$
- Shows the power of the index notation
 - See again the appearance of $\mathbf{A}^t \mathbf{A}$

Singular Value Decomposition

- Chief tool for dealing with *m* by *n* systems and singular systems.
- Singular values: Non negative square roots of the eigenvalues of A^tA . Denoted σ_i , i=1,...,n
 - A^tA is symmetric \rightarrow eigenvalues and singular values are real.
- SVD: If **A** is a real *m* by *n* matrix then there exist orthogonal matrices **U** ($\in \mathbb{R}^{m \times m}$) and **V** ($\in \mathbb{R}^{n \times n}$) such that **U**^t**AV**= Σ =diag($\sigma_1, \sigma_2, ..., \sigma_p$) $p=\min\{m,n\}$ $\mathbf{A}=\mathbf{U}\Sigma\mathbf{V}^{t}$
- Geometrically, singular values are the lengths of the hyperellipsoid defined by $E = \{Ax: ||x||_2 = 1\}$
- Singular values arranged in decreasing order.

Properties of the SVD

• Suppose we know the singular values of **A** and we know *r* are non zero

$$\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r \geq \sigma_{r+1} = \dots = \sigma_p = 0$$

- $\operatorname{Rank}(\mathbf{A}) = r.$
- $\text{Null}(\mathbf{A}) = \text{span}\{\mathbf{v}_{r+1}, \dots, \mathbf{v}_n\}$
- Range(A)=span{ $u_1,...,u_r$ }
- $||A||_F^2 = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_p^2$ $||A||_2 = \sigma_1$
- *Numerical rank:* If *k* singular values of *A* are larger than a given number *ε*. Then the *ε* rank of A is *k*.
- Distance of a matrix of rank *n* from being a matrix of rank $k = \sigma_{k+1}$

Why is it useful?

Square matrix may be singular due to round-off errors.
 Can compute a "regularized" solution

$$\mathbf{x} = \mathbf{A}^{-1} \mathbf{b} = (\mathbf{U} \Sigma \mathbf{V}^{\mathsf{t}})^{-1} \mathbf{b} = \sum_{i=1}^{n} \frac{\mathbf{u}_{i}^{\mathsf{t}} \mathbf{b}}{\sigma_{i}} \mathbf{v}_{i}$$

- If σ_i is small (vanishes) the solution "blows up"
- Given a tolerance ε we can determine a solution that is "closest" to the solution of the original equation, but that does not "blow up" $\mathbf{x}_r = \sum_{i=1}^k \frac{\mathbf{u}_i^i \mathbf{b}}{\sigma_i} \mathbf{v}_i \qquad \sigma_k > \varepsilon, \ \sigma_{k+1} \le \varepsilon$
- Least squares solution is the x that satisfies
 A^tAx=A^tb
- can be effectively solved using SVD