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Summary: Linear Spaces

n dimensional points 1n a vector space.
— Length, distance, angles
— Dot product (inner product)

Linear dependence of a set of vectors

Basis : a collection of n independent vectors so
that any vector can be expressed as a sum of these
vectors

Orthogonality <a,b>=0
Orthogonal basis: basis vectors satisty <b;,b>=0

Vector 1s represented 1n a particular basis
(coordinate system) <u,b.> = u,



Linear Manifolds (M): linear spaces that are subsets of the space
that are closed under vector addition and scalar multiplication

— If vectors u and v belong to the manifold then
sodo o, u + a,v

— Manifold must contain zero vector
— Essentially a full linear space of
smaller dimension.
Span of a set of vectors: set of all
vectors that can be created by
scalar multiplication and addition.

Vectors in the space that are in the rest 7y
of the space are orthogonal to vectors  Manifold spanned
in M. (M) © byu

Projection Theorem: any vector in the space X can be written
only one way in terms of a vector in M and a vector in M.



Gram Schmidt Orthogonalization

» (iven a set of basis vectors (b,,b,, ..., b, ) construct
an orthonormal basis (e,,e,, ..., e,) from it.
— Sete,=b/,/|| b
— g=b,—<b,, e>e,, e, = g,/
— For k=3, ...n
g.= b —2<by, e> e, e, = g./llgyll



Euclidean 3D

Three directions with basis vectors 1,j,k or

e]aezge3, Wlth ei .ej: 51]

Distance between two vectors u and v 1s ||u-v||

Dot product of two vectors u and v is [|u||.||v|| cos ©

Cross product of two vectors 1s uxv

— magnitude equal to the area of the L
parallelogram formed by u and v. uxXv=|u, u,
— Magnitude 1s [[u]| ||v|| sin © v, v,

— Direction 1s perpendicular to u and v
so that the three vectors form a right handed system

Is also written using the permutation symbol €,




Summation Convention

Boldface, transpose symbol and summation signs are
tiresome.
— Especially 1f you have to do things such as differentiation

* Vectors can be written in terms of unit basis vectors
a=a ita,jta;k=a,e ,+a,e,ta,e;
However, even this 1s clumsy. E.g., in 10 dimensions
— —y 10
a=a e, tae, ... Ta, e, =2, = ae
Notice that index i occurs twice 1n the expression.

— Einstein noticed this always occurred, so whenever index was
repeated twice he avoided writing %,

— instead of writing X.a;b; write ab; with the X, implied



Permutation Symbol

Permutation symbol &,
— If'1,j and k are in cyclic order g;, =1
* Cyclic=>(1,2,3) or (2,3,1) or (3,1,2)
— Ifin anticyclic order &, =-1
* Anticyclic =>(3,2,1) or (2,1,3) or (1,3,2)
— Else, g, =0
. (1,1,2), (2,3,3), ...
c=axb => c¢;=gab,

E 5 ldentlty eijk E .~ 6]1‘ 51{8- 6]8 51(1'

1S
— Very useful in proving vector identities

Indicial notation 1s also essential for working with tensors

— Tensors are essentially linear operators (matrices or their
generalizations to higher dimensions)



Examples

A. B, 1n 2 dimensions: A;B,+A,B,

A . Bjk in 3D? We have 3 indices here (i.j,k), but

only j 1s repeated twice and so it 1s A,;B,, + A,B,,

+A;3By,

Matrix vector product

AX = AX; Alx = AX;

— Using indicial notation can easily show

a.(bxc)=(axb).c

Homework: show a X(b x¢)=b(a.c)-c(a.b)



Operators / Matrices

Linear Operator A(c; u + o,v) = o, Au + o, Av
maps one vector to another
Ax=b

— mXxn dimensional matrix A multiplying a n dimensional vector
x to produce a m dimensional vector b 1n the dual space

Square matrix of dimension »n by n takes vector to
another vector 1n the same space.

Matrix entries are representations of the matrix using
basis vectors 4;; = < Ab;,b>

Eigenvectors are characteristic directions of the matrix.

Matrix decomposition is a factorization of a matrix into
matrices with specific properties.



Norm of a matrix
* ||A]| =20 AX|[<||A|| x|

* ||All=la; a.|'? Froebenius norm. If A is diagonal
A]|=[a,;*+ a)*+...+a,>]"

> |All; = max [JAx]]/][x]],. |
Can show 2 norm = square root of largest eigenvalue of A’A

Rank and Null Space

« Range of a mXxn dimensional matrix A
Range (A) = {ye R": y=AX for some x e R"}
* Null space of A 1s the set of vectors which it takes to zero.
Null(A) = {x eR": Ax =0}
* Rank of a matrix 1s the dimension of its range.
Rank (A) = Rank (A')
— Maximal number of independent rows or columns

 Dimension of Null(A)+Rank(A)=n



Orthogonality

Two vectors are orthogonal 1f <u,v>=(

Orthogonal matrix 1s composed of
orthogonal vectors as columns.

p.q=0
Usually represented as Q
By definition QQ'=I

—

q,
q,

P
P>

Matrices that rotate coordinate axes are

orthogonal matrices




Rotation in 2D and 3D

» Rotation through an angle 0 yoooA
x| [ cosB sin | x ,
|:y':|_|:—sin9 cosH:||:y:| *
« Rotation + translation o o

cos@ sin @

X B sinf || x s l X
y | |-sin® cos@|y| |t y

 Rotation in 3D

— ¢ about z axis, 0 about new x axis,
Vv about new y axis.

[ cosy cos ) —cos@singsiny

z sin@sin ¢

— — —

cosy sin @ +cosf cos P sy

—sinf cos ¢

—siny cos@ —cosfsingcosy —smy sing+cosO cosdcosy

cos6 X+ p,
—sinf@ cosO || y + p,

sinysin@ || x

cosy sinf

cos@

—d




Rotation matrix

» Rotates a vector represented 1n one
orthogonal coordinate system into a vector
in another coordinate system.

— Since length of vector should not change

|Qx||=||x|| for all x

— Since Q will not change a vector along
coordinate directions QQ'=1

— Columns of Q are its eigenvectors.

— Eigenvalues are all 1.



Similarity Transforms

Transforms vector represented in one basis to vector in
another basis

Let X={x,,...,Xx, } and Y={y,,...,y,} be two bases in a n
dimensional space

— There exists a transformation A which takes a vector expressed in
X to one expressed in Y,

— Inverse transformation A from Y to X also exists.
u=q\X, and u=pfy, =p4x,

Let B and C be two matrices. Then 1f

C=A''B A
B and C represent the same matrix transformation with
respect to different bases and are called Similar Matrices.

If A is orthogonal then C=A’BA



Eigenvalue problem

1.x #0,
2. Ax = A\x.

e )\ is an eigenvalue and x is an eigenvector.

o If yHA = Ayt then (), y) is a left eigenpair

e [f A = Axr. then (A — Al = 0. Hence (A —.A)
15 singular.

e The cigenvalues of A are the roots of the charac-
tertstic equation

Al = det( A — A) = 0,

e No distinction between left and right elgenvalues.

e The characteristic polynomital p can be factored
in the form

PIA) = (A — ALV HA — A2 (A — Ag ),
where the numbers A; are distincet and
ey + e + = ==+ 1L = T

e m; 1s the algebraic multiplicity of A;.



Remarks: Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of a real symmetric matrix are real.

In general since eigenvalues are determined by solving a
polynomial equation, they can be complex.

Further roots can be repeated =2 multiple eigenvectors correspond
to a single eigenvalue.

Transforming matrix into eigenbasis yields a diagonal matrix.

Q'AQ=A A 1s a matrix of eigenvalues

— Knowing the eigenvectors we can solve an equation Ax=b. Rewrite
it as
QAQQX=Qb Ay=f
— Where y=Qx and f= Q'b
— Can get x from y x=(QYly = Qy
Determinant is unchanged by an orthogonal transformation.
Determinant: Det(A) = A, A4, ...4,



When 1s Ax=Db Solvable?

 When does the equation Ax=b have a solution?
— Usual answer 1s if A is invertible
— However in many situations where A 1s singular there still may
be a meaningful solution.
* Fredholm Alternative Theorem.
— Look at the homogeneous systems
Ax=() (1) A'y=0(2)
— If (1) has only the trivial solution then so does (2). This occurs

only 1f det(A) # 0 (if A 1s invertible).
Then Ax=b has a unique solution x=A-'b

— If (1) has nontrivial solutions then det(A)=0.

» This means rows of A have interdependencies. In this case b must
reflect those dependencies



If 27 row of A is a sum of the 1% and 3™ rows, then b,=b,+b,

If there are k& independent solutions to equation (1) then A has a k
dimensional nullspace.

A" also has a k dimensional nullspace (but with different solutions).

— Let these solutions be n..;, n.,, ..., Ny,
For Ax=b can have solutions iff
<b,n*j>=0 j=1,..k
b must be orthogonal to the nullspace of A™.
1 1T T1ffx 1 1 2 1|y 0
2 =1 1|[x,|=[3|orAx=Db 1 -1 2|{»,[=]0
1 =2 0f|x ]| | L 11 0 fl»s| [O

Any solution with y,=-y, and y,=y, satisfies the adjoint equation
or the nullspace of A*is o [1,-1,1]"

Here <b,n.>= -1(20). So equation has no solution.
However if b=[1, 2, 1]* we would have a solution

General solution 1s x = x™+c, n., where X~ 1s a particular solution.



Least Squares

Number of equations and unknowns may not match
Look for solution by maximizing ||Ax - b||
(A;-b;).(4x,-D;) with respect to x;

Recall %% _ 5,
ox, —(Ayx, -b, )«(Ayx, -b) =0
ox,
(AUSjl).(Aikxk B bi) + (Aijxj - bi)°(Aik5kl) =0

Ay o(Ayx, D)+ (Aijxj -b,)eA; =2 (AilAikxk - Ailbi) =0
AilAikxk — Ailbi
Same as the solution of A’/Ax=A’b

Shows the power of the index notation
— See again the appearance of A'A



Singular Value Decomposition

Chief tool for dealing with m by n systems and singular
systems.

Singular values: Non negative square roots of the
eigenvalues of A*A. Denoted o, i=1,...,n
— A'A 1s symmetric = eigenvalues and singular values are real.

SVD: If A 1s areal m by n matrix then there exist
orthogonal matrices U (e R”™) and V (e R™") such

that U'AV= X =diag(o;, 0),..., 0,) p=min{m,n}
A=UX Wt

Geometrically, singular values are the lengths of the
hyperellipsoid defined by E={Ax: ||x||,=1}

Singular values arranged 1n decreasing order.



Properties of the SVD

Suppose we know the singular values of A and we know
¥ are non zero
0,20,2..20,20,,;=..=0,=0

— Rank(A) =r.

— Null(A) = span{v,, ...,V }

— Range(A)=span{u,,...,u, .}

|A||7= 07+ 0y’ +...+ 0, |4]],= o,
Numerical rank: If k singular values of A are larger than
a given number €. Then the € rank of A 1s £.

Distance of a matrix of rank » from being a matrix of
rank k= 0,



Why is it useful?

Square matrix may be singular due to round-off errors.
Can compute a “regularized” solution -

- x=Ab=(UZ VtYb= >,

i=1 O
If o; 1s small (vanishes) the solution “blows up”

G1ven a tolerance € we can determine a solution that 1s
“closest” to the solution of the t%riginal equation, but that
u

14 9 i
does not “blow up”  x, =) ) o,>¢&, 0,, <€
i=1 i

Least squares solution 1s the x that satisfies
A'Ax=A'D
can be effectively solved using SVD



