Linear Algebra for Computer Vision - part 2

CMSC 828 D
Outline

• Background and potpourri
• Summation Convention
• Eigenvalues and Eigenvectors
• Rank and Degeneracy
• Gram Schmidt Orthogonalization
• Fredholm Alternative Theorem
• Least Squares Formulation
• Singular Value Decomposition
• Applications
Summary: Linear Spaces

- n dimensional points in a vector space.
 - Length, distance, angles
 - Dot product (inner product)

- Linear dependence of a set of vectors

- Basis: a collection of n independent vectors so that any vector can be expressed as a sum of these vectors

- Orthogonality $\langle a, b \rangle = 0$

- Orthogonal basis: basis vectors satisfy $\langle b_i, b_j \rangle = 0$

- Vector is represented in a particular basis (coordinate system) $\langle u, b_i \rangle = u_i$
• **Linear Manifolds (M):** linear spaces that are subsets of the space that are closed under vector addition and scalar multiplication

 – If vectors \mathbf{u} and \mathbf{v} belong to the manifold then so do $\alpha_1 \mathbf{u} + \alpha_2 \mathbf{v}$

 – Manifold must contain zero vector

 – Essentially a full linear space of smaller dimension.

• **Span of a set of vectors:** set of all vectors that can be created by scalar multiplication and addition.

• **Vectors in the space that are in the rest of the space** are orthogonal to vectors in M. (M^\perp)

• **Projection Theorem:** any vector in the space X can be written only one way in terms of a vector in M and a vector in M^\perp.

Gram Schmidt Orthogonalization

- Given a set of basis vectors \((b_1, b_2, \ldots, b_n)\) construct an orthonormal basis \((e_1, e_2, \ldots, e_n)\) from it.
 - Set \(e_1 = \frac{b_1}{||b_1||}\)
 - \(g_2 = b_2 - \langle b_2, e_1 \rangle e_1\), \(e_2 = \frac{g_2}{||g_2||}\)
 - For \(k=3, \ldots, n\)
 \(g_k = b_k - \Sigma_j \langle b_k, e_j \rangle e_j\), \(e_k = \frac{g_k}{||g_k||}\)
Euclidean 3D

- Three directions with basis vectors i, j, k or e_1, e_2, e_3, with $e_i . e_j = \delta_{ij}$
- Distance between two vectors u and v is $||u - v||$
- Dot product of two vectors u and v is $||u||.||v|| \cos \theta$
- Cross product of two vectors is $u \times v$
 - magnitude equal to the area of the parallelogram formed by u and v. $u \times v = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$
 - Magnitude is $||u|| ||v|| \sin \theta$
 - Direction is perpendicular to u and v
 so that the three vectors form a right handed system
- Is also written using the permutation symbol ε_{ijk}
Summation Convention

• Boldface, transpose symbol and summation signs are tiresome.
 – Especially if you have to do things such as differentiation
• Vectors can be written in terms of unit basis vectors
 \[\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + a_3 \mathbf{e}_3 \]
• However, even this is clumsy. E.g., in 10 dimensions
 \[\mathbf{a} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + \ldots + a_{10} \mathbf{e}_{10} = \sum_{i=1}^{10} a_i \mathbf{e}_i \]
• Notice that index \(i \) occurs twice in the expression.
 – Einstein noticed this always occurred, so whenever index was repeated twice he avoided writing \(\Sigma_i \)
 – instead of writing \(\Sigma_i a_i b_i \), write \(a_i b_i \) with the \(\Sigma_i \) implied
Permutation Symbol

- Permutation symbol ε_{ijk}
 - If i, j and k are in cyclic order $\varepsilon_{ijk} = 1$
 - Cyclic => $(1,2,3)$ or $(2,3,1)$ or $(3,1,2)$
 - If in anticyclic order $\varepsilon_{ijk} = -1$
 - Anticyclic => $(3,2,1)$ or $(2,1,3)$ or $(1,3,2)$
 - Else, $\varepsilon_{ijk} = 0$
 - $(1,1,2), (2,3,3), \ldots$

- $\mathbf{c} = \mathbf{a} \times \mathbf{b} \implies c_i = \varepsilon_{ijk} a_j b_k$

- $\varepsilon \delta$ identity
 - $\varepsilon_{ijk} \varepsilon_{irs} = \delta_{jr} \delta_{ks} - \delta_{js} \delta_{kr}$
 - Very useful in proving vector identities

- Indicial notation is also essential for working with tensors
 - Tensors are essentially linear operators (matrices or their generalizations to higher dimensions)
Examples

- $A_i B_i$ in 2 dimensions: $A_1B_1+A_2B_2$
- $A_{ij} B_{jk}$ in 3D? We have 3 indices here (i,j,k), but only j is repeated twice and so it is $A_{i1}B_{1k} + A_{i2}B_{2k} + A_{i3}B_{3k}$
- Matrix vector product
 \[Ax = A_{ij}x_j, \quad A^t x = A_{ij}x_i \]
- $(a \times b) \cdot c = \varepsilon_{ijk}a_{j}b_{k}c_{i}$
 - Using indicial notation can easily show
 \[a \cdot (b \times c) = (a \times b) \cdot c \]
- Homework: show $a \times (b \times c) = b(a \cdot c) - c(a \cdot b)$
Operators / Matrices

• Linear Operator \(A(\alpha_1 u + \alpha_2 v) = \alpha_1 Au + \alpha_2 Av \)
• maps one vector to another
 \[Ax = b \]
 – \(m \times n \) dimensional matrix \(A \) multiplying a \(n \) dimensional vector \(x \) to produce a \(m \) dimensional vector \(b \) in the dual space
• Square matrix of dimension \(n \) by \(n \) takes vector to another vector in the same space.
• Matrix entries are representations of the matrix using basis vectors \(A_{ij} = \langle Ab_j, b_i \rangle \)
• Eigenvectors are characteristic directions of the matrix.
• Matrix decomposition is a factorization of a matrix into matrices with specific properties.
Norm of a matrix

- $\|A\| \geq 0$ and $\|Ax\| \leq \|A\| \|x\|
- $\|A\|_F = [a_{ij} a_{ij}]^{1/2}$ Froebenius norm. If A is diagonal, $\|A\|_F = [a_{11}^2 + a_{22}^2 + \ldots + a_{nn}^2]^{1/2}$
- $\|A\|_2 = \max_x \|Ax\|_2 / \|x\|_2$
 Can show 2 norm = square root of largest eigenvalue of A^tA

Rank and Null Space

- Range of a $m \times n$ dimensional matrix A
 Range $(A) = \{y \in \mathbb{R}^m: y = Ax \text{ for some } x \in \mathbb{R}^n\}$
- Null space of A is the set of vectors which it takes to zero.
 Null$(A) = \{x \in \mathbb{R}^n: Ax = 0\}$
- Rank of a matrix is the dimension of its range.
 Rank $(A) = \text{Rank } (A^t)$
 - Maximal number of independent rows or columns
- Dimension of Null$(A) + \text{Rank}(A) = n$
Orthogonality

- Two vectors are orthogonal if $\langle \vec{u}, \vec{v} \rangle = 0$
- Orthogonal matrix is composed of orthogonal vectors as columns.
 \[\begin{bmatrix} q_1 & p_1 & \cdots & r_1 \\ q_2 & p_2 & \vdots & r_2 \\ \vdots & \vdots & \ddots & \vdots \\ q_n & p_n & \cdots & r_n \end{bmatrix} \]
- Usually represented as \mathbf{Q}
- By definition $\mathbf{QQ}^t = \mathbf{I}$
- Matrices that rotate coordinate axes are orthogonal matrices
Rotation in 2D and 3D

- Rotation through an angle θ
 \[
 \begin{bmatrix}
 x' \\ y'
 \end{bmatrix} = \begin{bmatrix}
 \cos \theta & \sin \theta \\
 -\sin \theta & \cos \theta
 \end{bmatrix} \begin{bmatrix}
 x \\ y
 \end{bmatrix}
 \]

- Rotation + translation
 \[
 \begin{bmatrix}
 x' \\ y'
 \end{bmatrix} = \begin{bmatrix}
 \cos \theta & \sin \theta \\
 -\sin \theta & \cos \theta
 \end{bmatrix} \begin{bmatrix}
 x \\ y
 \end{bmatrix} + \begin{bmatrix}
 t_1 \\ t_2
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 x' \\ y'
 \end{bmatrix} = \begin{bmatrix}
 \cos \theta & \sin \theta \\
 -\sin \theta & \cos \theta
 \end{bmatrix} \begin{bmatrix}
 x + p_1 \\ y + p_2
 \end{bmatrix}
 \]

- Rotation in 3D
 - ϕ about z axis, θ about new x axis,
 ψ about new y axis.
 \[
 \begin{bmatrix}
 x' \\ y' \\ z'
 \end{bmatrix} = \begin{bmatrix}
 \cos \psi \cos \phi - \cos \theta \sin \phi \sin \psi & \cos \psi \sin \phi + \cos \theta \cos \phi \sin \psi & \sin \psi \sin \theta \\
 -\sin \psi \cos \phi - \cos \theta \sin \phi \cos \psi & -\sin \psi \sin \phi + \cos \theta \cos \phi \cos \psi & \cos \psi \sin \theta \\
 \sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta
 \end{bmatrix} \begin{bmatrix}
 x \\ y \\ z
 \end{bmatrix}
 \]
Rotation matrix

- Rotates a vector represented in one orthogonal coordinate system into a vector in another coordinate system.
 - Since length of vector should not change $\|Qx\| = \|x\|$ for all x
 - Since Q will not change a vector along coordinate directions $QQ^t = I$
 - Columns of Q are its eigenvectors.
 - Eigenvalues are all 1.
Similarity Transforms

• Transforms vector represented in one basis to vector in another basis

• Let \(X=\{x_1,\ldots,x_n\} \) and \(Y=\{y_1,\ldots,y_n\} \) be two bases in a \(n \) dimensional space
 - There exists a transformation \(A \) which takes a vector expressed in \(X \) to one expressed in \(Y \),
 - Inverse transformation \(A^{-1} \) from \(Y \) to \(X \) also exists.

\[
\mathbf{u} = \alpha_i \mathbf{x}_i \quad \text{and} \quad \mathbf{u} = \beta_i \mathbf{y}_i = \beta_i A_{ij} \mathbf{x}_j
\]

• Let \(\mathbf{B} \) and \(\mathbf{C} \) be two matrices. Then if

\[
\mathbf{C} = \mathbf{A}^{-1} \mathbf{B} \mathbf{A}
\]

\(\mathbf{B} \) and \(\mathbf{C} \) represent the same matrix transformation with respect to different bases and are called Similar Matrices.

• If \(\mathbf{A} \) is orthogonal then \(\mathbf{C} = \mathbf{A}^t \mathbf{B} \mathbf{A} \)
Eigenvalue problem

1. \(x \neq 0 \),

2. \(Ax = \lambda x \).

- \(\lambda \) is an eigenvalue and \(x \) is an eigenvector.
- If \(y^H A = \lambda y^H \), then \((\lambda, y) \) is a left eigenpair.
- If \(Ax = \lambda x \), then \((\lambda I - A)x = 0 \). Hence \((\lambda I - A) \) is singular.
- The eigenvalues of \(A \) are the roots of the characteristic equation
 \[
 p(\lambda) \equiv \det(\lambda I - A) = 0.
 \]
- No distinction between left and right eigenvalues.
- The characteristic polynomial \(p \) can be factored in the form
 \[
 p(\lambda) = (\lambda - \lambda_1)^{m_1}(\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_k)^{m_k},
 \]
 where the numbers \(\lambda_i \) are distinct and
 \[
 m_1 + m_2 + \cdots + m_k = n.
 \]
- \(m_i \) is the algebraic multiplicity of \(\lambda_i \).
Remarks: Eigenvalues and Eigenvectors

- Eigenvalues and Eigenvectors of a real symmetric matrix are real.
- In general since eigenvalues are determined by solving a polynomial equation, they can be complex.
- Further roots can be repeated ➔ multiple eigenvectors correspond to a single eigenvalue.
- Transforming matrix into eigenbasis yields a diagonal matrix.

\[Q^t A Q = \Lambda \quad \Lambda \text{ is a matrix of eigenvalues} \]

- Knowing the eigenvectors we can solve an equation \(A x = b \). Rewrite it as

\[Q^t A Q Q^t x = Q^t b \quad \Lambda y = f \]

- Where \(y = Q^t x \) and \(f = Q^t b \)
- Can get \(x \) from \(y \) \(x = (Q^t)^{-1} y = Q y \)

- Determinant is unchanged by an orthogonal transformation.
- Determinant: \(\text{Det}(A) = \lambda_1 \lambda_2 \ldots \lambda_n \)
When is $Ax=b$ Solvable?

- When does the equation $Ax=b$ have a solution?
 - Usual answer is if A is invertible
 - However in many situations where A is singular there still may be a meaningful solution.

- Fredholm Alternative Theorem.
 - Look at the homogeneous systems
 \[
 Ax=0 \quad (1) \quad A^*y=0 \quad (2)
 \]
 - If (1) has only the trivial solution then so does (2). This occurs only if $\det(A) \neq 0$ (if A is invertible).
 Then $Ax=b$ has a unique solution $x=A^{-1}b$
 - If (1) has nontrivial solutions then $\det(A)=0$.
 - This means rows of A have interdependencies. In this case b must reflect those dependencies
• If 2nd row of \(A\) is a sum of the 1st and 3rd rows, then \(b_2=b_1+b_3\)

• If there are \(k\) independent solutions to equation (1) then \(A\) has a \(k\) dimensional \textit{nullspace}.

• \(A^*\) also has a \(k\) dimensional nullspace (but with different solutions).
 – Let these solutions be \(n_{*1}, n_{*2}, \ldots, n_{*k}\)

• For \(Ax=b\) can have solutions iff

\[
\langle b, n_{*j} \rangle = 0 \quad j = 1, \ldots, k
\]

• \(b\) must be orthogonal to the nullspace of \(A^*\).

\[
\begin{bmatrix}
1 & 1 & 1 \\
2 & -1 & 1 \\
1 & -2 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix} =
\begin{bmatrix}
1 \\
3 \\
1 \\
\end{bmatrix}
\text{ or } Ax = b
\]

\[
\begin{bmatrix}
1 & 2 & 1 \\
1 & -1 & -2 \\
1 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0 \\
\end{bmatrix}
\]

• Any solution with \(y_2=-y_1\) and \(y_3=y_1\) satisfies the adjoint equation or the nullspace of \(A^*\) is \(\alpha [1,-1,1]^t\)

• Here \(\langle b, n_{*j} \rangle = -1(\neq 0)\). So equation has no solution.

• However if \(b=[1, 2, 1]^t\) we would have a solution

• General solution is \(x = x^\sim + c_k n_{*k}\) where \(x^\sim\) is a particular solution.
Least Squares

- Number of equations and unknowns may not match
- Look for solution by maximizing $||Ax - b||$
- $(A_{ij}x_j - b_i) \cdot (A_{ik}x_k - b_i)$ with respect to x_l
- Recall $\frac{\partial x_i}{\partial x_l} = \delta_{il}$

$$\frac{\partial}{\partial x_l} (A_{ij}x_j - b_i) \cdot (A_{ik}x_k - b_i) = 0$$

$$(A_{ij}\delta_{jl}) \cdot (A_{ik}x_k - b_i) + (A_{ij}x_j - b_i) \cdot (A_{ik}\delta_{kl}) = 0$$

$$A_{il} \cdot (A_{ik}x_k - b_i) + (A_{ij}x_j - b_i) \cdot A_{il} = 2 \left(A_{il}A_{ik}x_k - A_{il}b_i\right) = 0$$

$$A_{il}A_{ik}x_k = A_{il}b_i$$

- Same as the solution of $A^tAx = A^tb$
- Shows the power of the index notation
 - See again the appearance of A^tA
Singular Value Decomposition

- Chief tool for dealing with m by n systems and singular systems.

- **Singular values:** Non negative square roots of the eigenvalues of A^tA. Denoted $\sigma_i, i=1,...,n$
 - A^tA is symmetric \rightarrow eigenvalues and singular values are real.

- **SVD:** If A is a real m by n matrix then there exist orthogonal matrices $U (\in \mathbb{R}^{m \times m})$ and $V (\in \mathbb{R}^{n \times n})$ such that $U^tAV=\Sigma = \text{diag}(\sigma_1, \sigma_2, ..., \sigma_p)$ $p=\min\{m,n\}$
 $$A= U \Sigma V^t$$

- Geometrically, singular values are the lengths of the hyperellipsoid defined by $E=\{Ax: \|x\|_2=1\}$

- Singular values arranged in decreasing order.
Properties of the SVD

- Suppose we know the singular values of A and we know r are non zero

$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r \geq \sigma_{r+1} = \ldots = \sigma_p = 0$

- Rank(A) = r.
- Null(A) = span{v_{r+1}, \ldots, v_n}
- Range(A) = span{u_1, \ldots, u_r}

- $\|A\|_F^2 = \sigma_1^2 + \sigma_2^2 + \ldots + \sigma_p^2$ \quad $\|A\|_2 = \sigma_1$

- **Numerical rank**: If k singular values of A are larger than a given number ε. Then the ε rank of A is k.

- Distance of a matrix of rank n from being a matrix of rank $k = \sigma_{k+1}$
Why is it useful?

• Square matrix may be singular due to round-off errors. Can compute a “regularized” solution
 \[x = A^{-1}b = (U \Sigma V^t)^{-1}b = \sum_{i=1}^{n} \frac{u_i^t b}{\sigma_i} v_i \]
 • If \(\sigma_i \) is small (vanishes) the solution “blows up”
 • Given a tolerance \(\varepsilon \) we can determine a solution that is “closest” to the solution of the original equation, but that does not “blow up”
 \[x_r = \sum_{i=1}^{k} \frac{u_i^t b}{\sigma_i} v_i \quad \sigma_k > \varepsilon, \quad \sigma_{k+1} \leq \varepsilon \]

• Least squares solution is the \(x \) that satisfies
 \[A^t A x = A^t b \]
• can be effectively solved using SVD