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Linear Algebra for Computer 
Vision

Introduction

CMSC 828 D 

Outline
• Notation and Basics

• Motivation

• Linear systems of equations
– Gauss Elimination, LU decomposition

• Linear Spaces and Operators
– Addition, scalar multiplication, scalar product, 

transformation, operator, basis

• Eigenvalues, Eigenvectors

• Solvability conditions (“alternative theorem”)
– Adjoint, null space, orthogonality

Outline

• Euclidean space R3

– distance, angles, rotations

• Metric Space
– Distance, angles, rotations

• Least Squares

• Singular Value Decomposition

• Other Matrix decompositions

Motivation
• Fundamental to representation and numerical 

solution of almost all problems including those in 
vision and computational statistics.
– Solving equations for calibration, stereo, tracking, …

• Geometry is fundamental to vision. However one 
way of doing geometry is via algebra.
– Intersections of lines, points, planes. Determining 

angles. Determining orthogonal projections …

• Modern computer vision is formulated in terms of  
“projective geometry”. Most results in projective 
geometry are stated algebraically and require 
knowledge of concepts such as rank, null space, 
constraints

Applications

• Rectification of images

• Calibrating cameras

• Transforming color spaces

• Tracking motion of a rigid body

• Applying constraints from multiple views

• Parametrizing fundamental matrix and 
trifocal tensor.

Vectors
• A vector x of dimension d represents a point in a d

dimensional space
• Examples

– A point in 3D Euclidean space [x,y,z] or 2D image space [u,v]
– A point in a projective space P3 [X,Y,Z,W]  or in projective space 

P2 [U,V,W]
– Point in color space [r,g,b] or [y, u, v]
– Point in an infinite dimensional functional space on a Fourier 

basis
– Vector of intrinsic parameters  for a camera (focal length, skew

ratio, …)

• Essentially a short-hand notation to denote a grouping of 
points 
– No special structure yet
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Vectors and Matrices

• d×n dimensional 
matrix M and its 
transpose Mt

• Transpose indicated 
with a superscript t or 
a prime ′

•d dimensional column vector x and its transpose 

Determinant
• Determinant of a 2x2 matrix m11m22-m12m21

• For a higher dimensional matrix we have a 
recursive definition

Determinant: Remarks

• Determinant determines “magnitude” of 
matrix. Matrix with determinant =0 is called 
singular. 

• Determinant is important in theorems
• Practically the way to compute the 

determinant is not this way.
• Homework problem -- determine number of 

operations for recursive algorithm. 

Matrix basics

• Square matrix: number of rows = number of columns

• Symmetric matrix Aij=Aji . 

• Skew symmetric matrix Aij=-Aji . 

• Identity  I ij= δij

– Kronecker delta δij=0 if i≠j δij=1 if i=j

• Lower triangular Upper triangular
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Matrix vector product

• m×n dimensional matrix M multiplies by a 
n dimensional vector x to produce a m 
dimensional vector

Linear systems of equations

• Systems of equations
• Can be written as a 

matrix vector product
• Can change or scale rows
• Solved via Gauss

elimination
– Reduce system

to product of 
lower or upper triangular matrix and x

• O(N) operations to solve triangular system
• O(N3) operations to perform Gauss elimination
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LU decomposition
• Any matrix can be written as a product of a lower 

triangular and upper triangular matrix.

• Most used algorithm in linear algebra.

A=LU

• Practically implemented by reordering equations and 
scaling them so that loss of accuracy is minimized.

A=PLU

• Scaled LU decomposition with “partial pivoting”

• When A is symmetric positive definite               for all x
“Cholesky decomposition”

A=LLt
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Linear/Vector Spaces
• Previous stuff was somewhat mechanical.
• In vision we have to answer questions when

– Models provide equations that are singular or 
degenerate. What can we say about the solutions? Can 
we restrict them?

– Number of unknowns may be more or less than the 
number of observations. Can we still obtain a 
meaningful solution?

– How “far” is an approximation from a solution? How 
do we measure this distance?

– Matrices are operators that take one vector into another. 
What can we say about the properties of the operator? 
When is an equation involving an operator solvable?

Operators

• Function, Transformation, Operator, Mapping: synonyms

• A function takes elements x defined on its “Domain” D to 
elements y in its “Range” R which is part of E

• If for each y in R there is exactly one x in D the function is 
one-to-one. In this case an inverse exists whose domain is R 
and whose range is D

• We are interested in situations where R and D are finite-
dimensional linear spaces 
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Vector Space
• A collection of points that obey certain rules

– Commutative, existence of a zero element

– Scalar multiplication

• Let u1, …, uk be a set of vectors:
Linear combination
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Dependence and dimensionality
• A set of vectors is dependent if for some scalars α1, …, αk not 

all zero we can write
• Otherwise the vectors are independent.
• If the zero vector is part of a set of vectors that set is  

dependent. If a set of vectors is dependent so is any larger set
which contains it.

• A linear space is n dimensional if it possesses a set of n 
independent vectors but every n+1 dimensional set is 
dependent.

• A set of vectors b1, …, bk is a basis for a k dimensional space 
X if each vector in X can be expressed in one and only one 
way as a linear combination of b1, …, bk

• One example of a basis are the vectors (1,0,…,0), (0,1,…,0), 
…, (0,0, …, 1)

1 1 0k kα α+ + =u u"

Distances/Metrics and Norms
• We would like to measure distances and directions in the 

vector space the same way that we do it in Euclidean 3D

• Distance function d(u,v) makes a vector space a metric 
space if it satisfies
– d(u,v)>0 for u,v different

– d(u,u)=0, d(u,v)=d(v,u)

– d(u,w)≤ d(u,v)+d(v,w)  (triangle inequality)

• Norm (“length”). 
– ||u|| >0 for u not 0, ||0||=0

– || α u||=| α|  ||u||,           ||u+v || ≤ ||u|| + ||v||

• Normed linear space is a metric space with the metric 
defined by d(u,v)=||u-v||  and ||u||=d(u,0)
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• Dot product of two vectors with same dimension
<x,y> =

• Dot product space behaves like Euclidean R3

• Dot product defines a norm and a metric.
• Parallelogram law

||u+v||2+||u-v||2 = 2||u||2 + 2 ||v||2

• Orthogonal vectors <u,v>=0
• Angle between vectors 

cos θ=<x,y>/||x|| ||y|| 

• Orthonormal basis -- elements have norm 1 and are 
perpendicular to each other

• Other distances and products can also define a space:
– Mahalnobis distance

Dot Product Matrices as operators
• Matrix is an operator that takes a vector to 

another vector.
– Square matrix takes it to a vector in the space of 

the same dimension.

• Dot product provides a tool to examine 
matrix properties
– Adjoint  matrix  < Au,v> = <u,A*v>
– Square Matrix fully defined as result of its 

operation on members of a basis.
Aij = < Abj,bi>

Eigenvalues and Eigenvectors
• Square matrix possesses its own natural basis.
• Eigen relation

Au=λu
• Matrix A acts on vector u and produces a scaled version of 

the vector.
• Eigen is a German word meaning “proper” or “specific”
• u is the eigenvector while λ is the eigenvalue.

– If u is an eigenvector so is αu 
– If ||u||=1 then we call it a normal eigenvector
– λ is like a measure of the “strength” of A in the direction of u

• Set of all eigenvalues and eigenvectors of A is called the 
“spectrum of A”

Motivation: Stereo

• Point (x,y) on the image plane lies on a line 
in the world that passes 
through the image point
and center of 
projection C

Scene point
(xs , ys , zs )

(xi , yi , 0)

x

z

y

f

O

•Image of this
line in the world will
form a line in another 
camera

Epipolar Constraint
• Point in one image lies on the “epipolar 

line” in the other image

• Algebraic statement of geometry
– Equation of line in the other image is Fm

– Condition that the point m′ lies on this line is 

m′ ⋅Fm=0

• F is the “fundamental matrix”

• Estimating the fundamental matrix is an 
important problem in vision

Eight point algorithm: Determining the 
Fundamental matrix

• Given a set of matching points in the 
images, Determine F
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Determining F

• Write expression as an equation in the unknown 
elements.

• If we have eight points we can solve 
for elements of F, (e.g. via LU)

• If we have more than eight points
we can use a least squares 
formulation
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