Linear Algebra for Computer Vision

Introduction
CMSC 828 D

Outline

- Notation and Basics
- Motivation
- Linear systems of equations - Gauss Elimination, LU decomposition
- Linear Spaces and Operators
- Addition, scalar multiplication, scalar product, transformation, operator, basis
- Eigenvalues, Eigenvectors
- Solvability conditions ("alternative theorem") - Adjoint, null space, orthogonality

Outline

- Euclidean space R ${ }^{3}$
- distance, angles, rotations
- Metric Space
- Distance, angles, rotations
- Least Squares
- Singular Value Decomposition
- Other Matrix decompositions

Motivation

- Fundamental to representation and numerical solution of almost all problems including those in vision and computational statistics.
- Solving equations for calibration, stereo, tracking, ...
- Geometry is fundamental to vision. However one way of doing geometry is via algebra.
- Intersections of lines, points, planes. Determining angles. Determining orthogonal projections ...
- Modern computer vision is formulated in terms of "projective geometry". Most results in projective geometry are stated algebraically and require knowledge of concepts such as rank, null space, constraints

Applications

- Rectification of images
- Calibrating cameras
- Transforming color spaces
- Tracking motion of a rigid body
- Applying constraints from multiple views
- Parametrizing fundamental matrix and trifocal tensor.

Vectors

- A vector \mathbf{x} of dimension d represents a point in a d dimensional space
- Examples
- A point in 3D Euclidean space $[x, y, z]$ or 2D image space $[u, v]$
- A point in a projective space $\mathrm{P}^{3}[X, Y, Z, W]$ or in projective space $\mathrm{P}^{2}[U, V, W]$
- Point in color space $[r, g, b]$ or $[y, u, v]$
- Point in an infinite dimensional functional space on a Fourier basis
- Vector of intrinsic parameters for a camera (focal length, skew ratio, ...)
- Essentially a short-hand notation to denote a grouping of points
- No special structure yet

Vectors and Matrices

-d dimensional column vector \mathbf{x} and its transpose

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right) \quad \text { and } \quad \mathbf{x}^{t}=\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{d}
\end{array}\right)
$$

- $d \times n$ dimensional matrix \mathbf{M} and its transpose \mathbf{M}^{t}
- Transpose indicated with a superscript t or $\quad \mathrm{M}^{t}$ a prime ${ }^{\prime}$ $\mathbf{M}=\left(\begin{array}{ccccc}m_{11} & m_{12} & m_{13} & \ldots & m_{1 d} \\ m_{21} & m_{22} & m_{23} & \ldots & m_{2 d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{n 1} & m_{n 2} & m_{n 3} & \ldots & m_{n d}\end{array}\right)$ and $\mathbf{M}^{t}=\left(\begin{array}{c}m_{1} \\ m_{1} \\ m_{1} \\ \vdots \\ m_{1}\end{array}\right.$ $\left(\begin{array}{cccc}m_{11} & m_{21} & \ldots & m_{n 1} \\ m_{12} & m_{22} & \ldots & m_{n 2} \\ m_{13} & m_{23} & \ldots & m_{n 3} \\ \vdots & \vdots & \ddots & \vdots \\ m_{1 d} & m_{2 d} & \ldots & m_{n d}\end{array}\right)$.

Determinant: Remarks

- Determinant determines "magnitude" of matrix. Matrix with determinant $=0$ is called singular.
- Determinant is important in theorems
- Practically the way to compute the determinant is not this way.
- Homework problem -- determine number of operations for recursive algorithm.

Matrix vector product

- $m \times n$ dimensional matrix \mathbf{M} multiplies by a n dimensional vector \mathbf{x} to produce a m dimensional vector

$$
\begin{gathered}
\left(\begin{array}{cccc}
m_{11} & m_{12} & \cdots & m_{1 d} \\
m_{21} & m_{22} & \cdots & m_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
m_{n 1} & m_{n 2} & \cdots & m_{n d}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
\vdots \\
y_{n}
\end{array}\right), \\
y_{j}=\sum_{i=1}^{d} m_{j i} x_{i n}
\end{gathered}
$$

Linear systems of equations

- Systems of equations
- Can be written as a matrix vector product
- Can change or scale rows

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

$\underset{\text { - }}{\text { Solved via Gauss }}$
elimination
- Reduce system

a_{21} \& a_{22} \& a_{23}

a_{31} \& a_{32} \& a_{33}\end{array}\right], \mathbf{x}=\left[$$
\begin{array}{l}x_{1} \\
x_{2} \\
x_{3}\end{array}
$$\right], \mathbf{b}=\left[$$
\begin{array}{l}b_{1} \\
b_{2} \\
b_{3}\end{array}
$$\right]\) to product of
lower or upper triangular matrix and \mathbf{x}

- $O(N)$ operations to solve triangular system
- $O\left(N^{3}\right)$ operations to perform Gauss elimination

LU decomposition

- Any matrix can be written as a product of a lower triangular and upper triangular matrix.
- Most used algorithm in linear algebra.

$$
\mathbf{A}=\mathbf{L} \mathbf{U}
$$

- Practically implemented by reordering equations and scaling them so that loss of accuracy is minimized.

$$
A=\mathbf{P L U}
$$

- Scaled LU decomposition with "partial pivoting"
- When \mathbf{A} is symmetric positive definite $x^{t} A x>0$ for all x "Cholesky decomposition"
$\mathbf{A}=\mathbf{L} \mathbf{L}^{t}$

Linear/Vector Spaces

- Previous stuff was somewhat mechanical.
- In vision we have to answer questions when
- Models provide equations that are singular or degenerate. What can we say about the solutions? Can we restrict them?
- Number of unknowns may be more or less than the number of observations. Can we still obtain a meaningful solution?
- How "far" is an approximation from a solution? How do we measure this distance?
- Matrices are operators that take one vector into another. What can we say about the properties of the operator? When is an equation involving an operator solvable?

Dependence and dimensionality

- A set of vectors is dependent if for some scalars $\alpha_{l}, \ldots, \alpha_{k}$ not all zero we can write

$$
\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}=0
$$

- Otherwise the vectors are independent.
- If the zero vector is part of a set of vectors that set is dependent. If a set of vectors is dependent so is any larger set which contains it.
- A linear space is n dimensional if it possesses a set of n independent vectors but every $n+1$ dimensional set is dependent.
- A set of vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\mathbf{k}}$ is a basis for a k dimensional space X if each vector in X can be expressed in one and only one way as a linear combination of $\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{k}}$
- One example of a basis are the vectors $(1,0, \ldots, 0),(0,1, \ldots, 0)$, $\ldots,(0,0, \ldots, 1)$

Distances/Metrics and Norms

- We would like to measure distances and directions in the vector space the same way that we do it in Euclidean 3D
- Distance function $d(\boldsymbol{u}, \boldsymbol{v})$ makes a vector space a metric space if it satisfies
$-d(\boldsymbol{u}, \boldsymbol{v})>0$ for $\boldsymbol{u}, \boldsymbol{v}$ different
$-d(\boldsymbol{u}, \boldsymbol{u})=0, d(\boldsymbol{u}, \boldsymbol{v})=d(\boldsymbol{v}, \boldsymbol{u})$
$-d(\boldsymbol{u}, \boldsymbol{w}) \leq d(\boldsymbol{u}, \boldsymbol{v})+d(\boldsymbol{v}, \boldsymbol{w}) \quad$ (triangle inequality)
- Norm ("length").
- $\|\mathbf{u}\|>0$ for \mathbf{u} not $0,\|\mathbf{0}\|=0$
$-\|\alpha \mathbf{u}\|=\mid \alpha / / / \mathbf{u} / /, \quad / / \boldsymbol{u}+\boldsymbol{v} / / \leq / / \boldsymbol{u} / /+/ / \boldsymbol{v} / /$
- Normed linear space is a metric space with the metric defined by $d(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|$ and $\|\mathbf{u}\|=d(\mathbf{u}, 0)$

Dot Product

- Dot product of two vectors with same dimension

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{t} \mathbf{y}=\sum x_{i} y_{i}=\mathbf{y}^{t} \mathbf{x} .
$$

- Dot product space behaves like Euclidean R ${ }^{3}$
- Dot product defines a norm and a metric.
- Parallelogram law
$\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}=2\|\mathbf{u}\|^{2}+2\|\mathbf{v}\|^{2}$
- Orthogonal vectors $\langle\mathbf{u}, \mathbf{v}\rangle=0$
- Angle between vectors

$$
\cos \theta=<\mathbf{x}, \mathbf{y}>/\|\mathbf{x}\|\|y\|
$$

- Orthonormal basis -- elements have norm 1 and are perpendicular to each other
- Other distances and products can also define a space: Mahalnobis distance

Matrices as operators

- Matrix is an operator that takes a vector to another vector
- Square matrix takes it to a vector in the space of the same dimension.
- Dot product provides a tool to examine matrix properties
- Adjoint matrix $\langle\mathbf{A u}, \mathbf{v}\rangle=\left\langle\mathbf{u}, \mathbf{A}^{*} \mathbf{v}\right\rangle$
- Square Matrix fully defined as result of its operation on members of a basis.

$$
A_{\mathrm{ij}}=<\mathbf{A} \mathbf{b}_{\mathrm{j}}, \mathbf{b}_{\mathrm{i}}>
$$

Eigenvalues and Eigenvectors

- Square matrix possesses its own natural basis.
- Eigen relation

$$
\mathbf{A} \mathbf{u}=\lambda \mathbf{u}
$$

- Matrix \mathbf{A} acts on vector \mathbf{u} and produces a scaled version of the vector.
- Eigen is a German word meaning "proper" or "specific"
- \mathbf{u} is the eigenvector while λ is the eigenvalue.
- If \mathbf{u} is an eigenvector so is $\alpha \mathbf{u}$
- If $\|\mathbf{u}\|=1$ then we call it a normal eigenvector λ is like a measure of the "strength" of \mathbf{A} in the direction of \mathbf{u}
- Set of all eigenvalues and eigenvectors of \mathbf{A} is called the "spectrum of A"

Motivation: Stereo

- Point (x, y) on the image plane lies on a line in the world that passes through the image point and center of projection
-Image of this line in the world will ${ }^{〔}$ form a line in another camera

Epipolar Constraint

- Point in one image lies on the "epipolar line" in the other image
- Algebraic statement of geometry
- Equation of line in the other image is $\mathbf{F m}$
- Condition that the point \mathbf{m}^{\prime} lies on this line is
$\mathbf{m}^{\prime} \cdot \mathbf{F m}=0$
- \mathbf{F} is the "fundamental matrix"
- Estimating the fundamental matrix is an important problem in vision

Eight point algorithm: Determining the Fundamental matrix

- Given a set of matching points in the images, Determine F
$\left[\begin{array}{lll}u^{\prime} & v^{\prime} & 1]\end{array}\right]\left[\begin{array}{lll}f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & 1\end{array}\right]\left[\begin{array}{l}u \\ v \\ \vdots \\ 1\end{array}\right]=0$
$u^{\prime}\left(f_{11} u+f_{12} v+f_{13}\right)+v^{\prime}\left(f_{21} u+f_{22} v+f_{23}\right)+\left(f_{31}+f_{32}+1\right)=0$

Determining F

- Write expression as an equation in the unknown elements.
- If we have eight points we can solve for elements of \mathbf{F}, (e.g. via LU)
- If we have more than eight points we can use a least squares formulation

