# Linear Algebra for Computer Vision

Introduction CMSC 828 D

#### Outline

- Notation and Basics
- Motivation
- Linear systems of equations

   Gauss Elimination, LU decomposition
- Linear Spaces and Operators
   Addition, scalar multiplication, scalar product, transformation, operator, basis
- Eigenvalues, Eigenvectors
- Solvability conditions ("alternative theorem")
- Adjoint, null space, orthogonality

### Outline

- Euclidean space R<sup>3</sup> – distance, angles, rotations
- Metric Space – Distance, angles, rotations
- Least Squares
- Singular Value Decomposition
- · Other Matrix decompositions

#### Motivation

- Fundamental to representation and numerical solution of almost all problems including those in vision and computational statistics.
- Solving equations for calibration, stereo, tracking, ...Geometry is fundamental to vision. However one
- way of doing geometry is via algebra.
   Intersections of lines, points, planes. Determining angles. Determining orthogonal projections ...
- Modern computer vision is formulated in terms of "projective geometry". Most results in projective geometry are stated algebraically and require knowledge of concepts such as rank, null space, constraints

# Applications

- · Rectification of images
- Calibrating cameras
- Transforming color spaces
- Tracking motion of a rigid body
- Applying constraints from multiple views
- Parametrizing fundamental matrix and trifocal tensor.

# Vectors

- A vector **x** of dimension *d* represents a point in a *d* dimensional space
- Examples
- A point in 3D Euclidean space [x,y,z] or 2D image space [u,v]
   A point in a projective space P<sup>3</sup> [X,Y,Z,W] or in projective space P<sup>2</sup> [U,V,W]
- Point in color space [r,g,b] or [y, u, v]
- Point in an infinite dimensional functional space on a Fourier basis
- Vector of intrinsic parameters for a camera (focal length, skew ratio, ...)
- Essentially a short-hand notation to denote a grouping of points
  - No special structure yet





# Determinant: Remarks Determinant determines "magnitude" of matrix. Matrix with determinant =0 is called singular. Determinant is important in theorems Practically the way to compute the determinant is not this way.

• Homework problem -- determine number of operations for recursive algorithm.















#### Dependence and dimensionality

- A set of vectors is dependent if for some scalars  $\alpha_1, ..., \alpha_k$  not all zero we can write  $\alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k = 0$
- Otherwise the vectors are independent.
- If the zero vector is part of a set of vectors that set is dependent. If a set of vectors is dependent so is any larger set which contains it.
- A linear space is *n* dimensional if it possesses a set of n independent vectors but every *n*+1 dimensional set is dependent.
- A set of vectors b<sub>1</sub>,..., b<sub>k</sub> is a basis for a k dimensional space X if each vector in X can be expressed in one and only one way as a linear combination of b<sub>1</sub>,..., b<sub>k</sub>
- One example of a basis are the vectors (1,0,...,0), (0,1,...,0), ..., (0,0, ..., 1)



#### **Dot Product**

- Dot product of two vectors with same dimension  $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^t \mathbf{y} = \sum x_i y_i = \mathbf{y}^t \mathbf{x}.$
- Dot product space behaves like Euclidean R<sup>3</sup>
- Dot product space behaves like Edendean R
   Dot product defines a norm and a metric.
- Parallelogram law
- $\|\mathbf{u}+\mathbf{v}\|^2 + \|\mathbf{u}-\mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$
- Orthogonal vectors <u,v>=0
- Angle between vectors
  - $\cos\theta = <\mathbf{x}, \mathbf{y} > / \|\mathbf{x}\| \|\mathbf{y}\|$
- Orthonormal basis -- elements have norm 1 and are perpendicular to each other
- Other distances and products can also define a space:
   \_ Mahalnobis distance

#### Matrices as operators

- Matrix is an operator that takes a vector to another vector.
- Square matrix takes it to a vector in the space of the same dimension.
- Dot product provides a tool to examine matrix properties
  - Adjoint matrix  $\langle \mathbf{A}\mathbf{u},\mathbf{v}\rangle = \langle \mathbf{u},\mathbf{A}^*\mathbf{v}\rangle$
  - Square Matrix fully defined as result of its operation on members of a basis.

 $A_{ij} = < Ab_j, b_i >$ 

# Eigenvalues and Eigenvectors

- Square matrix possesses its own natural basis.
- Eigen relation

#### Au=λu

- Matrix **A** acts on vector **u** and produces a scaled version of the vector.
- · Eigen is a German word meaning "proper" or "specific"
- **u** is the eigenvector while  $\lambda$  is the eigenvalue.
- If u is an eigenvector so is αu
- If  $||\mathbf{u}||=1$  then we call it a normal eigenvector
- $-\lambda$  is like a measure of the "strength" of **A** in the direction of **u**
- Set of all eigenvalues and eigenvectors of **A** is called the "spectrum of A"



# Epipolar Constraint

- Point in one image lies on the "epipolar line" in the other image
- Algebraic statement of geometry
  - Equation of line in the other image is **Fm**
  - Condition that the point  $\mathbf{m}'$  lies on this line is  $\mathbf{m}' \cdot \mathbf{Fm} = 0$
- **F** is the "fundamental matrix"
- Estimating the fundamental matrix is an important problem in vision

# Eight point algorithm: Determining the Fundamental matrix

• Given a set of matching points in the images, Determine **F** 

$$\begin{bmatrix} u' & v' & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0$$
  
$$u'(f_{11}u + f_{12}v + f_{13}) + v'(f_{31}u + f_{22}v + f_{33}) + (f_{31} + f_{32} + 1) = 0$$

