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Notation and Basics
Motivation
Linear systems of equations
— Gauss Elimination, LU decomposition

Linear Spaces and Operators

— Addition, scalar multiplication, scalar product,
transformation, operator, basis

Eigenvalues, Eigenvectors

Solvability conditions (“alternative theorem™)
— Adjoint, null space, orthogonality



Outline

Euclidean space R’

— distance, angles, rotations

Metric Space

— Daistance, angles, rotations
Least Squares
Singular Value Decomposition

Other Matrix decompositions



Motivation

* Fundamental to representation and numerical
solution of almost all problems including those in
vision and computational statistics.

— Solving equations for calibration, stereo, tracking, ...

* Geometry 1s fundamental to vision. However one
way of doing geometry 1s via algebra.

— Intersections of lines, points, planes. Determining
angles. Determining orthogonal projections ...
 Modern computer vision 1s formulated in terms of
“projective geometry”’. Most results 1n projective
geometry are stated algebraically and require
knowledge of concepts such as rank, null space,
constraints



Applications

Rectification of images

Calibrating cameras

Transforming color spaces

Tracking motion of a rigid body
Applying constraints from multiple views

Parametrizing fundamental matrix and
trifocal tensor.



Vectors

* A vector x of dimension d represents a point in a d
dimensional space

« Examples
— A point in 3D Euclidean space [x,y,z] or 2D image space [u,V]
— A point in a projective space P3[X)Y,Z W] or in projective space
P [UV, W]
— Point in color space [r,g,b] or [y, u, v]

— Point in an infinite dimensional functional space on a Fourier
basis

— Vector of intrinsic parameters for a camera (focal length, skew
ratio, ...)
« Essentially a short-hand notation to denote a grouping of
points
— No special structure yet



Vectors and Matrices

*d dimensional column vector x and its transpose

d*n dimensional
matrix M and its
transpose M!

Transpose indicated
with a superscript ¢ or
a prime ’
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Determinant

e Determinant of a 2x2 matrix m;;m,,-m;,m,,

* For a higher dimensional matrix we have a
recursive definition
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Given the determinants |MJ;|1|, we can now compute the determinant of M the ex-
pansion by minors on the first column giving

, (23)
where the signs alternate. This process can be applied recursively to the successive
(smaller) matrixes in Eq. 23.

Only for a 3 < 3 matrix, this determinant calculation can be represented by “sweep-
ing” the matrix, i.e., taking the sum of the products of matrix terms along a diagonal,
where products from upper-left to lower-right are added with a positive sign, and those
from the lower-left to upper-right with a minus sign. That is,

M| = 77211 | My 1| — m21 [Mao1| + mez1 [Mgp| — - - - = ma [ My

11 M1z 113
M| = 21 M2z 17123 (24)
31 M3z 133
= 111792733 + 112137217132 + 1112712371231
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Determinant: Remarks

Determinant determines “magnitude” of
matrix. Matrix with determinant =0 1s called
singular.

Determinant 1s important in theorems

Practically the way to compute the
determinant 1s not this way.

Homework problem -- determine number of
operations for recursive algorithm.



Matrix basics

Square matrix: number of rows = number of columns
Symmetric matrix 4,=4;; .

Skew symmetric matrix 4,=-4;; .

Identity I;=0,

— Kronecker delta 0,=0 if i#j 0,=1 if i=/

Lower triangular Upper triangular
a 0 -+ 0 a ¢ - d]
c b . b :
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Matrix vector product

* mxn dimensional matrix M multiplies by a
n dimensional vector x to produce a m
dimensional vector
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Linear systems of equations
. X, +apX, +a3x, = b,
Systems of equations a,x +a,x, +a,x,=b,
Can be written as a

matrix vector product Ay, X; + d3pX, +dyxy = by

Can change or scale rows Ax=b

Solved via Gauss Fau dp, dp | Fxl | Fbl |

elimination A=|a, a, a,l|, x=|x,|, b=|b,

— Reduce system a, a4, d X, b,
to product of - - - -

lower or upper triangular matrix and x
O(N) operations to solve triangular system
O(N?) operations to perform Gauss elimination




LU decomposition

Any matrix can be written as a product of a lower
triangular and upper triangular matrix.

Most used algorithm 1n linear algebra.
A=LU

Practically implemented by reordering equations and
scaling them so that loss of accuracy 1s minimized.

A=PLU [(1) (ﬂ
Scaled LU decomposition with “partial pivoting”

When A is symmetric positive definite x'Ax>0 for all x

“Cholesky decomposition”
A=LL/



Linear/Vector Spaces

 Previous stuff was somewhat mechanical.

* In vision we have to answer questions when

— Models provide equations that are singular or
degenerate. What can we say about the solutions? Can
we restrict them?

— Number of unknowns may be more or less than the
number of observations. Can we still obtain a
meaningful solution?

— How “far” 1s an approximation from a solution? How
do we measure this distance?

— Matrices are operators that take one vector into another.
What can we say about the properties of the operator?
When 1s an equation involving an operator solvable?



Operators

Function, Transformation, Operator, Mapping: synonyms

A function takes elements x defined on its “Domain” D to

elements y 1n 1ts “Range” R which 1s part of £ E

D

If for each y in R there 1s exactly one x in D the function 1s
one-to-one. In this case an inverse exists whose domain 1s R
and whose range 1s D

We are interested 1n situations where R and D are finite-
dimensional linear spaces



Vector Space

* A collection of points that obey certain rules

— Commutative, existence of a zero element
u+v=v+u; u+(v+w)=(u+v)+w

30, u+0=u Vu; u+(-u)=0

— Scalar multiplication

oa(pPu)=(op)u;, lu=u
(Bu)=(oB) 0o £~
(a+Blu=o0u+Pu; a(u+v)=cu+ov v
 Letuy, ..., ube aset of vectors:
Linear combination S-u
/ Manifold spanned

ou +---+o,u, by



Dependence and dimensionality

A set of vectors 1s dependent if for some scalars o, ..., o, not
all zero we can write o u, +-+ou, =0

Otherwise the vectors are independent.

If the zero vector 1s part of a set of vectors that set 1s
dependent. If a set of vectors 1s dependent so 1s any larger set
which contains it.

A linear space is n dimensional 1f it possesses a set of n
independent vectors but every n+1 dimensional set 1s
dependent.

A set of vectors by, ..., b, 1s a basis for a k dimensional space
X 1f each vector in X can be expressed 1in one and only one
way as a linear combination of by, ..., b,

One example of a basis are the vectors (1,0,...,0), (0,1,...,0),
...,(0,0,...,1)



Distances/Metrics and Norms

We would like to measure distances and directions in the
vector space the same way that we do it in Euclidean 3D

Distance function d(u,v) makes a vector space a metric

space 1f it satisfies
— d(u,v)>0 for u,v different
— du,u)=0, du,v)=d(v,u)
— du,w)< du,v)+d(v,w) (triangle inequality)
Norm (“length”).
— |[u]| >0 for u not 0, ||0||=0
— |[ovul=[ o/ ju/j, [futv [] < [fu]] + [[v]]
Normed linear space 1s a metric space with the metric
defined by d(u,v)=|[u-v|| and ||u||=d(u,0)



Dot Product

Dot product of two vectors with same dimension
<X,y> = X'y = Z Ty = y'x.

Dot product space behaves like Euclidean R3

Dot product defines a norm and a metric.

Parallelogram law

lutv][PHu-v]2 = 2f[u[? + 2 lv]]

Orthogonal vectors <u,v>=(

Angle between vectors
cos 0=<x,y>/||x| [ly]

Orthonormal basis -- elements have norm 1 and are
perpendicular to each other

Other distances and products can also define a space:
— Mabhalnobis distance



Matrices as operators

* Matrix i1s an operator that takes a vector to
another vector.

— Square matrix takes it to a vector in the space of
the same dimension.

* Dot product provides a tool to examine
matrix properties
— Adjoint matrix <Au,v>=<u,A"v>

— Square Matrix fully defined as result of its
operation on members of a basis.

Aij = << Abj9bl>



Eigenvalues and Eigenvectors

Square matrix possesses 1ts own natural basis.

Eigen relation
Au=A\u
Matrix A acts on vector u and produces a scaled version of
the vector.
Eigen 1s a German word meaning “proper” or “specific”
u is the eigenvector while A is the eigenvalue.
— If u 1s an eigenvector so 1s OlU

— If |[u][=1 then we call it a normal eigenvector
— A is like a measure of the “strength” of A in the direction of u

Set of all eigenvalues and eigenvectors of A 1s called the
“spectrum of A”



Motivation: Stereo

* Point (x,y) on the 1mage plane lies on a line

in the world that passes
through the image point
and center of
projection
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Scene point

«Image of this p /
line in the world will® 7 i
form a line in another -

camera




Epipolar Constraint

Point 1n one 1mage lies on the “epipolar

line” 1n the other 1mage

Algebraic statement of geometry

— Equation of line in the other image 1s Fm

— Condition that the point m” lies on this line is
m’ -Fm=0

F 1s the “fundamental matrix”

Estimating the fundamental matrix 1s an
important problem 1in vision



Zmiijij =0

Eight point algorithm: Determining the
Fundamental matrix

* (G1ven a set of matching points in the
images, Determine F
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Determining F

* Write expression as an equation in the unknown

elements.

« If we have eight points we can solve
for elements of F, (e.g. via LU)
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* If we have more than eight points
we can use a least squares
formulation
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