Linear Algebra for Computer Vision

Introduction

CMSC 828 D

Outline

- Notation and Basics
- Motivation
- Linear systems of equations
 - Gauss Elimination, LU decomposition
- Linear Spaces and Operators
 - Addition, scalar multiplication, scalar product, transformation, operator, basis
- Eigenvalues, Eigenvectors
- Solvability conditions ("alternative theorem")
 - Adjoint, null space, orthogonality

Outline

- Euclidean space R³
 - distance, angles, rotations
- Metric Space
 - Distance, angles, rotations
- Least Squares
- Singular Value Decomposition
- Other Matrix decompositions

Motivation

- Fundamental to representation and numerical solution of almost all problems including those in vision and computational statistics.
 - Solving equations for calibration, stereo, tracking, ...
- Geometry is fundamental to vision. However one way of doing geometry is via algebra.
 - Intersections of lines, points, planes. Determining angles. Determining orthogonal projections ...
- Modern computer vision is formulated in terms of "projective geometry". Most results in projective geometry are stated algebraically and require knowledge of concepts such as rank, null space, constraints

Applications

- Rectification of images
- Calibrating cameras
- Transforming color spaces
- Tracking motion of a rigid body
- Applying constraints from multiple views
- Parametrizing fundamental matrix and trifocal tensor.

Vectors

- A vector **x** of dimension *d* represents a point in a *d* dimensional space
- Examples
 - A point in 3D Euclidean space [x,y,z] or 2D image space [u,v]
 - A point in a projective space $P^3[X,Y,Z,W]$ or in projective space $P^2[U,V,W]$
 - Point in color space [r,g,b] or [y, u, v]
 - Point in an infinite dimensional functional space on a Fourier basis
 - Vector of intrinsic parameters for a camera (focal length, skew ratio, ...)
- Essentially a short-hand notation to denote a grouping of points
 - No special structure yet

Vectors and Matrices

•d dimensional column vector **x** and its transpose

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \quad \text{and} \quad \mathbf{x}^t = (x_1 \ x_2 \ \dots \ x_d)$$

- $d \times n$ dimensional matrix M and its transpose M^t
- Transpose indicated

$$\mathbf{M} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & \dots & m_{1d} \\ m_{21} & m_{22} & m_{23} & \dots & m_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & m_{n3} & \dots & m_{nd} \end{pmatrix} \text{ and }$$

Transpose indicated with a superscript
$$t$$
 or a prime '
$$\begin{pmatrix}
m_{11} & m_{21} & \dots & m_{n1} \\
m_{12} & m_{22} & \dots & m_{n2} \\
m_{13} & m_{23} & \dots & m_{n3} \\
\vdots & \vdots & \ddots & \vdots \\
m_{1d} & m_{2d} & \dots & m_{nd}
\end{pmatrix}.$$

Determinant

- Determinant of a 2x2 matrix m₁₁m₂₂-m₁₂m₂₁
- For a higher dimensional matrix we have a recursive definition

$$i \begin{pmatrix} m_{11} & m_{12} & \cdots & \bigotimes & \cdots & \cdots & m_{1d} \\ m_{21} & m_{22} & \cdots & \bigotimes & \cdots & \cdots & m_{2d} \\ \vdots & \vdots & \ddots & \bigotimes & \cdots & \cdots & \vdots \\ \vdots & \vdots & \cdots & \bigotimes & \cdots & \cdots & \vdots \\ \bigotimes & \bigotimes & \bigotimes & \bigotimes & \bigotimes & \bigotimes \\ \vdots & \vdots & \cdots & \bigotimes & \cdots & \cdots & \vdots \\ m_{d1} & m_{d2} & \cdots & \bigotimes & \cdots & \cdots & m_{dd} \end{pmatrix} = \mathbf{M}_{i|j}. \tag{22}$$

Given the determinants $|\mathbf{M}_{x|1}|$, we can now compute the determinant of \mathbf{M} the expansion by minors on the first column giving

$$|\mathbf{M}| = m_{11}|\mathbf{M}_{1|1}| - m_{21}|\mathbf{M}_{2|1}| + m_{31}|\mathbf{M}_{3|1}| - \dots \pm m_{d1}|\mathbf{M}_{d|1}|, \tag{23}$$

where the signs alternate. This process can be applied recursively to the successive (smaller) matrixes in Eq. 23.

Only for a 3×3 matrix, this determinant calculation can be represented by "sweeping" the matrix, i.e., taking the sum of the products of matrix terms along a diagonal, where products from upper-left to lower-right are added with a positive sign, and those from the lower-left to upper-right with a minus sign. That is,

$$|\mathbf{M}| = \begin{vmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{vmatrix}$$

$$= m_{11}m_{22}m_{33} + m_{13}m_{21}m_{32} + m_{12}m_{23}m_{31}$$

$$-m_{13}m_{22}m_{31} - m_{11}m_{23}m_{32} - m_{12}m_{21}m_{33}.$$
(24)

Determinant: Remarks

- Determinant determines "magnitude" of matrix. Matrix with determinant =0 is called singular.
- Determinant is important in theorems
- Practically the way to compute the determinant is not this way.
- Homework problem -- determine number of operations for recursive algorithm.

Matrix basics

- Square matrix: number of rows = number of columns
- Symmetric matrix $A_{ij} = A_{ji}$.
- Skew symmetric matrix $A_{ij} = -A_{ji}$.
- Identity $\mathbf{I}_{ij} = \delta_{ij}$
 - Kronecker delta $\delta_{ij}=0$ if $i\neq j$ $\delta_{ij}=1$ if i=j
- Lower triangular

Upper triangular

$$\begin{bmatrix} a & 0 & \cdots & 0 \\ c & b & \ddots & \vdots \\ \vdots & \cdots & \ddots & 0 \\ f & g & \cdots & d \end{bmatrix} \qquad \begin{bmatrix} a & c & \cdots & d \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & e \\ 0 & \cdots & 0 & d \end{bmatrix}$$

Matrix vector product

m×*n* dimensional matrix **M** multiplies by a
 n dimensional vector **x** to produce a m
 dimensional vector

$$\begin{pmatrix} m_{11} & m_{12} & \dots & m_{1d} \\ m_{21} & m_{22} & \dots & m_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \dots & m_{nd} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_n \end{pmatrix},$$

$$y_j = \sum_{i=1}^d m_{ji} x_i.$$

Linear systems of equations

- Systems of equations
- Can be written as a matrix vector product
- Can change or scale rows

to product of

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

$$Ax = b$$

- Solved via Gauss elimination $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ lower or upper triangular matrix and x
- O(N) operations to solve triangular system
- $O(N^3)$ operations to perform Gauss elimination

LU decomposition

- Any matrix can be written as a product of a lower triangular and upper triangular matrix.
- Most used algorithm in linear algebra.

A=LU

• Practically implemented by reordering equations and scaling them so that loss of accuracy is minimized.

$$\mathbf{A} = \mathbf{PLU} \qquad \qquad \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$$

- Scaled LU decomposition with "partial pivoting"
- When A is symmetric positive definite $x^t Ax > 0$ for all x "Cholesky decomposition"

$$\mathbf{A} = \mathbf{L} \mathbf{L}^{t}$$

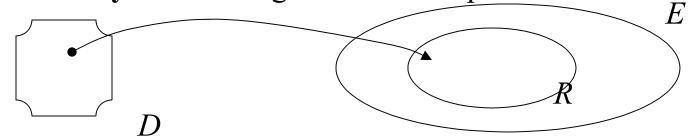
Linear/Vector Spaces

- Previous stuff was somewhat mechanical.
- In vision we have to answer questions when
 - Models provide equations that are singular or degenerate. What can we say about the solutions? Can we restrict them?
 - Number of unknowns may be more or less than the number of observations. Can we still obtain a meaningful solution?
 - How "far" is an approximation from a solution? How do we measure this distance?
 - Matrices are operators that take one vector into another.
 What can we say about the properties of the operator?
 When is an equation involving an operator solvable?

Operators

• Function, Transformation, Operator, Mapping: synonyms

• A function takes elements **x** defined *on* its "Domain" *D* to elements **y** in its "Range" *R* which is part of *E*



- If for each y in R there is exactly one x in D the function is one-to-one. In this case an inverse exists whose domain is R and whose range is D
- We are interested in situations where *R* and *D* are finite-dimensional linear spaces

Vector Space

A collection of points that obey certain rules

- Commutative, existence of a zero element
$$u + v = v + u$$
; $u + (v + w) = (u + v) + w$ $2u$

$$\exists 0, \ u + 0 = u \ \forall u; \quad u + (-u) = 0$$
- Scalar multiplication

Scalar multiplication

$$\alpha (\beta u) = (\alpha \beta) u; \quad 1u = u$$

$$(\alpha + \beta) u = \alpha u + \beta u; \quad \alpha (u + v) = \alpha u + \alpha v$$

• Let $\mathbf{u_1}, \dots, \mathbf{u_k}$ be a set of vectors:

Linear combination

$$\alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k$$

Manifold spanned by u

Dependence and dimensionality

- A set of vectors is dependent if for some scalars $\alpha_1, ..., \alpha_k$ not all zero we can write $\alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k = 0$
- Otherwise the vectors are independent.
- If the zero vector is part of a set of vectors that set is dependent. If a set of vectors is dependent so is any larger set which contains it.
- A linear space is n dimensional if it possesses a set of n independent vectors but every n+1 dimensional set is dependent.
- A set of vectors $\mathbf{b_1}$, ..., $\mathbf{b_k}$ is a basis for a k dimensional space X if each vector in X can be expressed in one and only one way as a linear combination of $\mathbf{b_1}$, ..., $\mathbf{b_k}$
- One example of a basis are the vectors (1,0,...,0), (0,1,...,0), ..., (0,0,...,1)

Distances/Metrics and Norms

- We would like to measure distances and directions in the vector space the same way that we do it in Euclidean 3D
- Distance function d(u,v) makes a vector space a metric space if it satisfies
 - $d(\mathbf{u}, \mathbf{v}) > 0$ for \mathbf{u}, \mathbf{v} different
 - $d(\mathbf{u}, \mathbf{u}) = 0, d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$
 - $-d(\mathbf{u},\mathbf{w}) \le d(\mathbf{u},\mathbf{v}) + d(\mathbf{v},\mathbf{w})$ (triangle inequality)
- Norm ("length").
 - $\|\mathbf{u}\| > 0 \text{ for } \mathbf{u} \text{ not } 0, \|\mathbf{0}\| = 0$
 - $-\parallel \alpha \mathbf{u} \parallel = \mid \alpha / / / \mathbf{u} / / \mathbf{u} = | \alpha / / \mathbf{u} / / \mathbf{u} + \mathbf{v} / / \leq | / \mathbf{u} / / + | / \mathbf{v} / /$
- Normed linear space is a metric space with the metric defined by $d(\mathbf{u},\mathbf{v})=||\mathbf{u}-\mathbf{v}||$ and $||\mathbf{u}||=d(\mathbf{u},0)$

Dot Product

Dot product of two vectors with same dimension

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^t \mathbf{y} = \sum x_i y_i = \mathbf{y}^t \mathbf{x}.$$

- Dot product space behaves have like Euclidean R³
- Dot product defines a norm and a metric.
- Parallelogram law

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$$

- Orthogonal vectors $\langle \mathbf{u}, \mathbf{v} \rangle = 0$
- Angle between vectors

$$\cos \theta = \langle x,y \rangle / ||x|| ||y||$$

- Orthonormal basis -- elements have norm 1 and are perpendicular to each other
- Other distances and products can also define a space:
 - Mahalnobis distance

Matrices as operators

- Matrix is an operator that takes a vector to another vector.
 - Square matrix takes it to a vector in the space of the same dimension.
- Dot product provides a tool to examine matrix properties
 - Adjoint matrix $\langle \mathbf{A}\mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{A}^* \mathbf{v} \rangle$
 - Square Matrix fully defined as result of its operation on members of a basis.

$$A_{ij} = \langle \mathbf{A}\mathbf{b}_{j}, \mathbf{b}_{i} \rangle$$

Eigenvalues and Eigenvectors

- Square matrix possesses its own natural basis.
- Eigen relation

$Au=\lambda u$

- Matrix A acts on vector **u** and produces a scaled version of the vector.
- Eigen is a German word meaning "proper" or "specific"
- \mathbf{u} is the eigenvector while λ is the eigenvalue.
 - If \mathbf{u} is an eigenvector so is $\alpha \mathbf{u}$
 - If $\|\mathbf{u}\|=1$ then we call it a normal eigenvector
 - $-\lambda$ is like a measure of the "strength" of **A** in the direction of **u**
- Set of all eigenvalues and eigenvectors of **A** is called the "spectrum of A"

Motivation: Stereo

• Point (x,y) on the image plane lies on a line

Scene point

 (x_s, v_s, ζ_s)

 $(x_i, y_i, 0)$

in the world that passes through the image point and center of

projection

•Image of this line in the world will form a line in another camera

Epipolar Constraint

- Point in one image lies on the "epipolar line" in the other image
- Algebraic statement of geometry
 - Equation of line in the other image is Fm
 - Condition that the point m' lies on this line is
 m'⋅Fm=0
- **F** is the "fundamental matrix"
- Estimating the fundamental matrix is an important problem in vision

Eight point algorithm: Determining the Fundamental matrix

• Given a set of matching points in the images, Determine **F**

$$[u' \ v' \ 1] \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0$$

$$u'(f_{11}u + f_{12}v + f_{13}) + v'(f_{21}u + f_{22}v + f_{23}) + (f_{31} + f_{32} + 1) = 0$$

Determining F

- Write expression as an equation in the unknown elements.
- If we have eight points we can solve for elements of F, (e.g. via LU)

$$[u'u \quad u'v \quad u' \quad v'u \quad v'v \quad v' \quad 1 \quad 1$$

 $\begin{bmatrix} u'u & u'v & u' & v'u & v'v & v' & 1 & 1 \end{bmatrix} \begin{vmatrix} f_{13} \\ f_{21} \\ f_{22} \end{vmatrix} =$ ore than eight points
least squares $\begin{vmatrix} f_{13} \\ f_{21} \\ f_{22} \\ f_{31} \\ f_{31} \end{vmatrix}$ If we have more than eight points we can use a least squares formulation

$$\begin{vmatrix} f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \end{vmatrix} = \begin{bmatrix} -1 \end{bmatrix}$$