
v Refraction of light
v Thin-lens equation
v Optical power and accommodation
v Image irradiance and scene radiance
v Human eye
v Geometry of perspective imaging

Image formation - 2

v As p gets large, q approaches f
v As \boldsymbol{q} approaches f, p approaches infinity

$$
E=\frac{\pi}{4}\left(\frac{D}{f}\right)^{2} \cos ^{4} \alpha L
$$

Image irradiance E is proportional to scene radiance
Brighter scene points produce brighter pixels
Image irradiance is proportional to inverse of square of f-number (f / D), is larger for small f-number
Image formation - 19

Photoreceptor Mosaics

v The retina is covered with a mosaic of photoreceptors
v Two different types of photoreceptors

- Rods - approximately 100,000,000 - Cones - approximately 5,000,000
v Rods
- Sensitive to low levels of light: scotopic light levels
v Cones
- Sensitive to higher levels of light: photopic light levels
v Mesopic light levels - both rods and cones active
Image formation - 22

Photoreceptor Mosaics

v Fovea is area of highest concentration of photoreceptors

- fovea contains no rods, just cones
- approximately 50,000 cones in the fovea
- cannot see dim light sources (like stars) when we look straight at them!
v TV camera photoreceptor mosaics
- nearly square mosaic of approximately 800X640 elements for
(A) Cones in the Fovea. Several neurons per cone
v (B) Cones and Rods in the periphery
Rods are small but several rods per neuron
complete field of view

Image formation - 24

v Two types of color cameras

- Single CCD array
u in front of each CCD element is a filter - red, green or blue
color values at each pixel are obtained by hardware interpolation
- subject to artifacts
- lower intensity quality than a monochromatic camera
- 3 CCD arrays packed together, each sensitive to different wavelengths of light

Image formation-28

v How much of the world does a cone see?

- measured in terms of visual angle
- the eye lens collects light over a total field of view of about 100°
- each cone collects light over a visual angle of about 8.5×10^{-3} degrees (about 30 seconds)
v How much of the world does a single camera CCD see
- example: 30° lens
- 30/500 gives about 6×10^{-2} degrees per CCD
- Eye's acuity is 10 times higher.

Image formation - 30

${ } \mathrm{v}$ Line of sight to a point in the scene is the line through the center of projection to that point
v Image plane is parallel to the $x-y$ plane

- distance to image plane is f - focal length
- this inverts the image
- move the image plane in front of the center of projection

Image formation - 32

v Lens imperfections might cause rays not to intersect at a point

- Deviations in shape from the ideal lens
- Material imperfections that might cause the refractive index to vary within the lens

Image formation - 40

v Chromatic aberration

- Different wavelengths of light from the same point source are focused at different distances behind the lens
- When incident light is a mixture of wavelengths, we can observe a chromatic fringe at edges
- Accommodation can bring any wavelength into good focus, but not all simultaneously
- Human visual system has other mechanisms for reducing chromatic aberration
- Color cameras have similar problems

