Reconstruction from Multiple Views

Daniel DeMenthon

3D Reconstruction from Image Pairs

 Findinterest points

« Match interest points

» Compute fundamental matrix F

e Compute cameramatricesPand P’ from F

* For each matching image pointsx and x’,
compute point X inscene

Computing Scene Point from
Two Matching Image Points

* We now have computedP and P’ from F
Problem: find X from x and X’

* x=PX,x' =P X.Combineinto aform
AX=0

Solve A X =0using SVD and picking the
singular vector corresponding to the
smalestsingular value

= Note: Nonlinear methods generally give better
results

Computing Scene Point from Two
M | ints (Details)
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Computing Scene Point from Two
Matching Image Points (End)
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Projective Reconstruction Theorem

* Assume we determine matching pointsx, and
X';. Then we can compute a unique fundamental
matrix F

 Therecovered camera matrices are not unique:
(P, P, (P, P',), etc.

 Thereconstruction isnot unique: X,;, X, etc.

» There exists a projective transformation H such
that X, =H X, P,=P,H% P ,=P" H?




Projective Reconstruction Theorem (Details)

* There exists a projective transformation H such
that X, =H X;, P,=P,HY, P, =P  H!
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P,X,=P,H*X,=P,H*HXx, =P, x, =X
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Projective Reconstruction Theorem
(Conseguences)

» We can compute a projective reconstruction
of ascenefrom 2 views based onimage
correspondences aone

* Wedon't haveto know anything about the
calibration or poses of the cameras

 Thetruereconstructioniswithin a
projective transformation H of the
projective recongtruction: X, = H X

Reconstruction Ambiguities
« If thereconstruction is derived from real images,
thereis atrue reconstruction that can producethe
actual points Xi of thescene

« Our reconstruction may differ from the actual one

= |f the cameras are calibrated but their relative poseis
unknown, then angles between rays are the true
angles, and the reconstruction is correct within a
similarity (we cannot get the scale)

« Euclidean or metric reconstruction

= |f we don’t use calibration, then we get a projective

reconstruction

Rectifying Projective
Reconstruction to Metric
» Computehomography H such that X, =H X;
for five or more ground control pointsXg; with
known Euclidean positions
= Hisa4 x 4 homogeneous matrix
 Then the metric reconstruction is

P, =PH P, =P'H% X, =HX,

Results using 5 points

Stratified Reconstruction

» Begin with aprojective reconstruction |
« Refineit to an affine reconstruction

= Parallel lines are parallel; ratios along parallel
lines are correct |

= Reconstructed scene is then an affine

transformation of the actual scene .

* Thenrefineit to ametric reconstruction
= Angles and rétios are correct

= Reconstructed scene isthen a scaled version of
actual scene




From Projective to Affine Reconstruction

* Find 3 intersections of setsof linesinthe
scenethat are supposed to be parallel
= These 3 points define aplanep
 Find atransformationH that mapsthe plane
p totheplaneat infinity (0,0,0,1)™:
= This plane contains all points at infinity:
(0,0,0,1) (x,y,z,0T =0
*HTp=(0,0,0,1)7,0rHT(0,0,0, 1) =p
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Example of Affine Reconstruction
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From Affine to Metric Reconstruction

« Use constraints from scene orthogonal lines

* Useconstraints arising from having the
same camerain both images

Direct Metric Reconstruction

using Camera Calibration
Find calibration matricesK and K’ using 3
vanishing pointsfor orthogonal scenelines
= See homework
Normalizeimage points
» Compute fundamental matrix using

matched normalized points: we get the
essential matrix E

Select P=[I |0]andP'=[R [T]. Then E=[T] R
Find T and R using SVD of E
From P and P’, reconstruct scene points
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Reconstruction from N Views

* Projective or afine reconstruction froma
possibly large set of images
* Problem
= Set of 3D points X;
= Set of cameras P!
= For each cameraP', set of image points x;

* Find 3D points X; and cameras P' such that
Pi X] = in

Bundle Adjustment

* Solvefollowing minimization problem
* Find P"and X; that minimize
a d(P X;,x))’
= Levenber¢!Marquardt algorithm
= Problems:

« Many parameters: 11 per camera, 3 per 3D point
« Matrices(11m+3n)x (11m+3n)
» Good initialization required
« Mainly used asfinal adjustment step of the
bundleof rays




Initial Solutions:
Affine Factorization Algorithm

» Tomas and Kanade (1992)
 Affine reconstruction

» Affine camera
s 2 éxu
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* Inhomogeneous coordinatesx=M X + T

Affine Factorization

* Minimize § (¢ -(M' X, +T'))?

+ Choose centroid of pointsasorigin of scene
coordinate system

» Choosepixel (0, 0) at image of centroid

Then the problem becomes:

Minimize & (-M' X))*

= Note: This reic{ui res the same pointsto be
visbleindl views
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Affine Factorization

» Consider the measurement matrix (one row
perimagepoint) ¢ ki .. xu

€, 2 2 2 U
w=gl % %y
e o i
Em ym mY
e X o Xj
eM* U

. R Wt
« The projection matrix is w=8" dx, x, - x,]
b
* Minimize [w-W

Affine Factorization

Minimize |w -Wj
FindW asthe SVD of W truncated to rank 3:
W = UsnsDas Vs
Then M may be chosenasU D and X asVT
Thisdecompositionisnot unique:
W=M X =(M A)(A*X)
Reconstruction isdefined up to amatrix A

Reconstruction isaffine
To upgrade to ametric reconstruction, see above
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Projective Factorization
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Projective Factorization

1. Startwithaninitia estimate of the depthsw’

2. From the measurement matrix W, find the
nearest rank 4 approximation using the SVD
and decompose to find the camera matrices
and 3D points

3. Reproject the pointsinto each imageto obtain
new estimates of the depths and repeat from
step 2




Reconstruction from

Video Sequences
» Computeinterest pointsin each image
» Compute interest point correspondences
betweenimage pairs
» Compute fundamental matrix F for each
image pair
* Initial reconstruction

» Bundle-adjust the camerasand 3D structure
to minimize projection errors

I ssues for Videos

* Small basdline between image pairs
= Advantage: having similar images facilitates finding
point correspondences
= Disadvantage: 3D structure is estimated poorly for
each image pair
* Solutions:

= Use consecutive images for point correspondences,
and images far apart for 3D structure reconstruction

= Make small batches and combine them by least
square

= Use recursive least square method
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Examples of 3D Reconstruction

Examples of 3D Reconstruction
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