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3D Reconstruction from Image Pairs

e Find interest points

e Match interest points

e Compute fundamental matrix F

e Compute cameramatrices P and P’ from F

 For each matching image points x and X’
compute point X in scene



Computing Scene Point from
Two Matching Image Points

We now have computed P and P’ from F
Problem: find X from x and X’

X=PX,x =P X.Combineinto aform
AX=0

Solve A X =0 using SVD and picking the
singular vector corresponding to the

smallest singular value

* Note: Nonlinear methods generally give better
results



Computing Scene Point from Two
Matching Image Points (Detalls)
x=PXU x" (PX)=0
/g;g/ l ePT cPI XU
X= gyg gP X
gly 8'33 4 & XY

y(P;X)- (P, X)=0

x(PIX)- (P/X)=0
T T Linear combination of
X(P X) Y(P X) O other 2 equations




Computing Scene Point from Two
Matching Image Points (End)

« Homogeneoussystem A X =01s
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Projective Reconstruction Theorem

» Assume we determine matching points x; and
X';. Then we can compute a unique fundamental
matrix F

e The recovered camera matrices are not unique;
(P, P’ ), (P, P’,), etc.

» Thereconstruction is not unique: X ;, X,;, €tc.

* There exists a projective transformation H such
that X2i =H Xli’ P2 = PlH'l, P’Z — P’lH-l



Projective Reconstruction Theorem (Details)

* There exists a projective transformation H such
that X2i = | Xli’ P2 = Pl ='1, P,Z — P’lH-l

P,X,=P,H*X,=P,H H x;, =P, X, =X



Projective Reconstruction Theorem
(Consequences)

 \We can compute a projective reconstruction
of a scene from 2 views based on image
correspondences alone

e Wedon't have to know anything about the
calibration or poses of the cameras

* Thetrue reconstruction iswithin a
projective transformation H of the
projective reconstruction: X, = H X,



Reconstruction Ambiguities

o |If the reconstruction is derived from real images,
there isatrue reconstruction that can produce the
actual points Xi of the scene

 Our reconstruction may differ from the actual one

» |f the cameras are calibrated but their relative pose is
unknown, then angles between rays are the true
angles, and the reconstruction is correct within a
similarity (we cannot get the scale)

 Euclidean or metric reconstruction

» |f wedon't use calibration, then we get a projective
reconstruction



Rectifying Projective
Reconstruction to Metric

Compute homography H such that X, = H X
for five or more ground control points X, with
known Euclidean positions

* Hisa4 x 4 homogeneous matrix
Then the metric reconstruction Is

Py =PH™, P, =P H", X, =H X,
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Results using 5 points
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Stratified Reconstruction

* Begin with a projective reconstruction ’

e Refineit to an affine reconstruction

» Parallel lines are parallel; ratios along paraIIeI’
INes are correct

= Reconstructed scene is then an affine J
transformation of the actual scene

» Then refine it to a metric reconstruction .
» Angles and ratios are correct

= Reconstructed scene is then a scaled version of
actual scene
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From Projective to Affine Reconstruction

e Find 3 intersections of sets of linesin the
scene that are supposed to be paralléd

* These 3 points define aplane p

* Find atransformation H that maps the plane
p totheplaneat infinity (O, 0, 0, 1)':
* This plane contains all points at infinity:
(0,0,0,1) (x,y,z,0"=0
*HTp=(0001)",0rHT(0,0,0,1)" =p

el 0 0 p,uedu ep,u

O 10 Py oy, o, 9100 Apply H to scene points,

g) 0 1 p3g§09 g)gu SpTHandtocameraSPandP’

e Uuéu é

D 0 0 p,Géli &.0 .




Example of Affine Reconstruction
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From Affine to Metric Reconstruction

e Use congtraints from scene orthogonal lines

» Use congtraints arising from having the
same camera in both images
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Direct Metric Reconstruction

using Camera Calibration

Find calibration matrices K and K’ using 3
vanishing points for orthogonal scene lines

= See homework
Normalize image points

Compute fundamental matrix using
matched normalized points. we get the
essential matrix E

Select P=[l |0] and P'=[R |T]. Then E=[T] R
Find T and R using SVD of E
From P and P’, reconstruct scene points
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Reconstruction from N Views

Projective or affine reconstruction from a
nossibly large set of Images

Problem

= Set of 3D points X;

= Set of cameras P

= For each cameraP', set of image points x;

= Find 3D points X; and cameras P' such that
P Xj = in
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Bundle Adjustment

« Solve following minimization problem
= Find P'and X; that minimize
a d(P' X;,x)?
. Levenbergi’-jl\/l arquardt algorithm
= Problems:

e Many parameters. 11 per camera, 3 per 3D point
e Matrices(11m+3n)x(11m+3n)
« (Good initialization required

 Mainly used asfinal adjustment step of the
bundle of rays
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Initial Solutions:
Affine Factorization Algorithm

Tomas and Kanade (1992)
Affine reconstruction
Affine camera

o exu o
eua em; m, mg 1Ue 0 o gxg
é u_ée ue U —n ey U
@Vg_é 1 mzz mzs TzueZup ng Mng,J-l_T
evg 60 0 O 1l9|e { g2y

u
|nhomogeneous coord nat&s X=MX+T
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Affine Factorization

Mlnlmlzea(x -(M' X, +T)?

Choose centroid of points as origin of scene
coordinate system

Choose pixd (0, 0) at Image of centroid

Then the problem becomes:
Minimize @ (X -M'X,))?

= Note: This reduires the same points to be
visiblein all views
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Affine Factorization

e Conslder the measurement matrix (one row
per Image point)

X
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e The projection matrix is w

e Minimize
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Affine Factorization

Minimize |w-w
Find W asthe SVD of W truncated to rank 3:
W = U s Das Vi
Then M may bechosenasU Dand X asV'
This decomposition IS not unique:
W=MX=(M A)(A™*X)
Reconstruction is defined up to a matrix A

Reconstruction is affine
To upgrade to a metric reconstruction, see above
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Projective Factorization

D iy '
. x; =P X, x —(UJ,J,V\/') W'( Y d) = j
cwixt wix o w0 6P
é €52 0
aWoX; W5 X5 W X2 u aP ﬂ X ]
et - ae:
& m m U & mu
v Xy W' X, W' X0 e8P0
eP' U -TheVVj are unknown, related
. _gpzl,J to the depths of pointsin
* W=g, ﬂxl Xy Xa)  cameracoordinates
g *We dropped the primes on X;

* W hasrank 4. Assume the w;' coefficients known
W3m n _U3m4D44Vr;r4
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Projective Factorization

1. Start with an initial estimate of the depths w;

2. From the measurement matrix W, find the
nearest rank 4 approximation using the SVD
and decompose to find the camera matrices
and 3D points

3. Reproject the points into each image to obtain
new estimates of the depths and repeat from
step 2

24



Reconstruction from
Video Sequences

Compute interest points in each image
Compute interest point correspondences
between image pairs

Compute fundamental matrix F for each
Image pair

Initial reconstruction

Bundle-adjust the cameras and 3D structure
to minimize projection errors
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| ssues for Videos

« Small baseline between image pairs
= Advantage: having similar images facilitates finding
point correspondences
» Disadvantage: 3D structure is estimated poorly for
each Image pair
e Solutions,

= Use consecutive images for point correspondences,
and Images far apart for 3D structure reconstruction

= Make small batches and combine them by |least
square

» Userecursive |east square method
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Examples of 3D Reconstruction
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