Reconstruction from Multiple Views

Daniel DeMenthon

3D Reconstruction from Image Pairs

- Find interest points
- Match interest points
- Compute fundamental matrix **F**
- Compute camera matrices P and P' from F
- For each matching image points x and x', compute point X in scene

Computing Scene Point from Two Matching Image Points

- We now have computed P and P' from F
- Problem: find X from x and x'
- $\mathbf{x} = \mathbf{P} \mathbf{X}$, $\mathbf{x'} = \mathbf{P'} \mathbf{X}$. Combine into a form $\mathbf{A} \mathbf{X} = \mathbf{0}$
- Solve $\mathbf{A} \mathbf{X} = \mathbf{0}$ using SVD and picking the singular vector corresponding to the smallest singular value
 - Note: Nonlinear methods generally give better results

Computing Scene Point from Two Matching Image Points (Details)

$$\mathbf{x} = \mathbf{P} \mathbf{X} \Leftrightarrow \mathbf{x} \times (\mathbf{P} \mathbf{X}) = \mathbf{0}$$

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{P} \mathbf{X} = \begin{bmatrix} \mathbf{P}_1^T \\ \mathbf{P}_2^T \\ \mathbf{P}_3^T \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{P}_1^T \mathbf{X} \\ \mathbf{P}_2^T \mathbf{X} \\ \mathbf{P}_3^T \mathbf{X} \end{bmatrix}$$

$$y(\mathbf{P}_{3}^{T}\mathbf{X}) - (\mathbf{P}_{2}^{T}\mathbf{X}) = 0$$

$$x(\mathbf{P}_{3}^{T}\mathbf{X}) - (\mathbf{P}_{1}^{T}\mathbf{X}) = 0$$

$$x(\mathbf{P}_{2}^{T}\mathbf{X}) - y(\mathbf{P}_{1}^{T}\mathbf{X}) = 0$$
Linear combination of other 2 equations

Computing Scene Point from Two Matching Image Points (End)

• Homogeneous system $\mathbf{A} \mathbf{X} = 0$ is

$$\begin{bmatrix} x \mathbf{P}_3^{\mathrm{T}} & -\mathbf{P}_1^{\mathrm{T}} \\ y \mathbf{P}_3^{\mathrm{T}} & -\mathbf{P}_2^{\mathrm{T}} \\ x' \mathbf{P}_3^{\mathrm{T}} & -\mathbf{P}_1^{\mathrm{T}} \\ y' \mathbf{P}_3^{\mathrm{T}} & -\mathbf{P}_2^{\mathrm{T}} \end{bmatrix} \mathbf{X} = 0$$

• \mathbf{X} is the last column of \mathbf{V} in the SVD of \mathbf{A} , $\mathbf{A} = \mathbf{U} \mathbf{D} \mathbf{V}^{\mathbf{T}}$

Projective Reconstruction Theorem

- Assume we determine matching points $\mathbf{x_i}$ and $\mathbf{x'_i}$. Then we can compute a unique fundamental matrix \mathbf{F}
- The recovered camera matrices are not unique: $(\mathbf{P_1}, \mathbf{P'_1}), (\mathbf{P_2}, \mathbf{P'_2}), \text{ etc.}$
- The reconstruction is not unique: X_{1i} , X_{2i} , etc.
- There exists a projective transformation \mathbf{H} such that $\mathbf{X_{2i}} = \mathbf{H} \, \mathbf{X_{1i}}, \, \mathbf{P_2} = \mathbf{P_1} \, \mathbf{H^{-1}}, \, \mathbf{P'_2} = \mathbf{P'_1} \, \mathbf{H^{-1}}$

Projective Reconstruction Theorem (Details)

• There exists a projective transformation \mathbf{H} such that $\mathbf{X}_{2i} = \mathbf{H} \ \mathbf{X}_{1i}, \ \mathbf{P}_2 = \mathbf{P}_1 \ \mathbf{H}^{-1}, \ \mathbf{P'}_2 = \mathbf{P'}_1 \ \mathbf{H}^{-1}$

$$P_2 X_2 = P_1 H^{-1} X_2 = P_1 H^{-1} H X_1 = P_1 X_1 = X$$

Projective Reconstruction Theorem (Consequences)

- We can compute a projective reconstruction of a scene from 2 views based on image correspondences alone
- We don't have to know anything about the calibration or poses of the cameras
- The true reconstruction is within a projective transformation \mathbf{H} of the projective reconstruction: $\mathbf{X_{2i}} = \mathbf{H} \ \mathbf{X_{1i}}$

Reconstruction Ambiguities

- If the reconstruction is derived from real images, there is a **true** reconstruction that can produce the actual points **X**i of the scene
- Our reconstruction may differ from the actual one
 - If the cameras are calibrated but their relative pose is unknown, then angles between rays are the true angles, and the reconstruction is correct within a similarity (we cannot get the scale)
 - Euclidean or metric reconstruction
 - If we don't use calibration, then we get a projective reconstruction

Rectifying Projective Reconstruction to Metric

- Compute homography H such that $\mathbf{X}_{Ei} = \mathbf{H} \ \mathbf{X}_{i}$ for five or more ground control points \mathbf{X}_{Ei} with known Euclidean positions
 - H is a 4 x 4 homogeneous matrix
- Then the metric reconstruction is

$$P_{M} = P H^{-1}, P'_{M} = P' H^{-1}, X_{Mi} = H X_{i}$$

Results using 5 points

Stratified Reconstruction

- Begin with a projective reconstruction
- Refine it to an affine reconstruction
 - Parallel lines are parallel; ratios along parallel lines are correct
 - Reconstructed scene is then an affine transformation of the actual scene
- Then refine it to a metric reconstruction
 - Angles and ratios are correct
 - Reconstructed scene is then a scaled version of actual scene

From Projective to Affine Reconstruction

- Find 3 intersections of sets of lines in the scene that are supposed to be parallel
 - These 3 points define a plane *p*
- Find a transformation \mathbf{H} that maps the plane p to the plane at infinity $(0, 0, 0, 1)^T$:
 - This plane contains all points at infinity: $(0, 0, 0, 1) (x, y, z, 0)^T = 0$
 - **H**-T $p = (0, 0, 0, 1)^T$, or $\mathbf{H}^T(0, 0, 0, 1)^T = p$

$$\begin{bmatrix} 1 & 0 & 0 & \boldsymbol{p}_1 \\ 0 & 1 & 0 & \boldsymbol{p}_2 \\ 0 & 0 & 1 & \boldsymbol{p}_3 \\ 0 & 0 & 0 & \boldsymbol{p}_4 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{p}_1 \\ \boldsymbol{p}_2 \\ \boldsymbol{p}_3 \\ \boldsymbol{p}_4 \end{bmatrix} \Rightarrow \mathbf{H} = \begin{bmatrix} \mathbf{I} \mid \mathbf{0} \\ \mathbf{p}^T \end{bmatrix} \text{ Apply } \mathbf{H} \text{ to scene points, and to cameras } \mathbf{P} \text{ and } \mathbf{P}'$$

Example of Affine Reconstruction

From Affine to Metric Reconstruction

- Use constraints from scene orthogonal lines
- Use constraints arising from having the same camera in both images

Direct Metric Reconstruction using Camera Calibration

- Find calibration matrices **K** and **K**' using 3 vanishing points for orthogonal scene lines
 - See homework
- Normalize image points
- Compute fundamental matrix using matched normalized points: we get the essential matrix **E**
- Select $P=[I \mid 0]$ and $P'=[R \mid T]$. Then $E=[T]_{\times}R$
- Find T and R using SVD of E
- From **P** and **P**', reconstruct scene points

Reconstruction from N Views

- Projective or affine reconstruction from a possibly large set of images
- Problem
 - Set of 3D points **X**_j
 - Set of cameras Pⁱ
 - For each camera P^i , set of image points x_j^i
 - Find 3D points X_j and cameras P^i such that $P^i X_j = x_j^i$

Bundle Adjustment

- Solve following minimization problem
 - Find P^i and X_j that minimize

$$\sum d(\mathbf{P^i} \ \mathbf{X_j}, \mathbf{x_j^i})^2$$

- Levenberg^{i,j}-Marquardt algorithm
- Problems:
 - Many parameters: 11 per camera, 3 per 3D point
 - Matrices (11 m + 3 n) x (11 m + 3 n)
 - Good initialization required
- Mainly used as final adjustment step of the bundle of rays

Initial Solutions: Affine Factorization Algorithm

- Tomasi and Kanade (1992)
- Affine reconstruction
- Affine camera

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & T_1 \\ m_{21} & m_{22} & m_{23} & T_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \mathbf{M} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \mathbf{T}$$

• Inhomogeneous coordinates x = M X + T

Affine Factorization

- Minimize $\sum_{i} (\mathbf{X}_{j}^{i} (\mathbf{M}^{i} \mathbf{X}_{j} + \mathbf{T}^{i}))^{2}$
- Choose centroid of points as origin of scene coordinate system
- Choose pixel (0, 0) at image of centroid
- Then the problem becomes: Minimize $\sum (\mathbf{x_j^i} \cdot \mathbf{M^i} \ \mathbf{X_j}))^2$
 - Note: This requires the same points to be visible in all views

Affine Factorization

• Consider the measurement matrix (one row

$$\mathbf{W} = \begin{bmatrix} \mathbf{x}_1^1 & \mathbf{x}_2^1 & \cdots & \mathbf{x}_n^1 \\ \mathbf{x}_1^2 & \mathbf{x}_2^2 & \cdots & \mathbf{x}_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_1^m & \mathbf{x}_2^m & \cdots & \mathbf{x}_n^m \end{bmatrix}$$

- The projection matrix is $\hat{\mathbf{W}} = \begin{bmatrix} \mathbf{M}^1 \\ \mathbf{M}^2 \\ \vdots \\ \mathbf{M}^m \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$
- Minimize $\|\mathbf{W} \cdot \hat{\mathbf{W}}\|$

Affine Factorization

- Minimize $\|\mathbf{W} \cdot \hat{\mathbf{W}}\|$
- Find $\hat{\mathbf{W}}$ as the SVD of \mathbf{W} truncated to rank 3:

$$\hat{\mathbf{W}} = \mathbf{U}_{2m \times 3} \ \mathbf{D}_{3 \times 3} \ \mathbf{V}_{n \times 3}^{\mathrm{T}}$$

- Then M may be chosen as U D and X as V^T
- This decomposition is not unique:

$$\hat{\mathbf{W}} = \hat{\mathbf{M}} \hat{\mathbf{X}} = (\hat{\mathbf{M}} \mathbf{A}) (\mathbf{A}^{-1} \hat{\mathbf{X}})$$

- Reconstruction is defined up to a matrix A
- Reconstruction is affine
- To upgrade to a metric reconstruction, see above

Projective Factorization

$$\mathbf{x}_{\mathbf{j}}^{\mathbf{i}} = \mathbf{P}^{\mathbf{i}} \ \mathbf{X}_{\mathbf{j}}, \ \mathbf{x}_{\mathbf{j}}^{\mathbf{i}} = (u_{\mathbf{j}}^{\mathbf{i}}, v_{\mathbf{j}}^{\mathbf{i}}, w_{\mathbf{j}}^{\mathbf{i}}) = w_{\mathbf{j}}^{\mathbf{i}} (x_{\mathbf{j}}^{\mathbf{i}}, y_{\mathbf{j}}^{\mathbf{i}}, 1) = w_{\mathbf{j}}^{\mathbf{i}} \ \mathbf{x}_{\mathbf{j}}^{\mathbf{i}}$$

$$\begin{bmatrix} w_{1}^{1} \mathbf{x}_{1}^{1} & w_{2}^{1} \mathbf{x}_{2}^{1} & \cdots & w_{n}^{1} \mathbf{x}_{n}^{1} \\ w_{1}^{2} \mathbf{x}_{1}^{2} & w_{2}^{2} \mathbf{x}_{2}^{2} & \cdots & w_{n}^{2} \mathbf{x}_{n}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n}^{\mathbf{m}} \mathbf{x}_{1}^{\mathbf{m}} & w_{2}^{\mathbf{m}} \mathbf{x}_{2}^{\mathbf{m}} & \cdots & w_{n}^{\mathbf{m}} \mathbf{x}_{n}^{\mathbf{m}} \end{bmatrix} = \begin{bmatrix} \mathbf{P}^{1} \\ \mathbf{P}^{2} \\ \vdots \\ \mathbf{P}^{\mathbf{m}} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{1} & \mathbf{X}_{1} & \cdots & \mathbf{X}_{n} \end{bmatrix}$$

•
$$\hat{\mathbf{W}} = \begin{bmatrix} \mathbf{P^1} \\ \mathbf{P^2} \\ \vdots \\ \mathbf{P^m} \end{bmatrix} \begin{bmatrix} \mathbf{X_1} & \mathbf{X_1} & \cdots & \mathbf{X_n} \end{bmatrix}$$
 • The W_j^i are unknown, related to the depths of points in camera coordinates • We dropped the primes on $\mathbf{X_j}^i$

- W has rank 4. Assume the $w_{\mathbf{j}}^{\mathbf{i}}$ coefficients known $\hat{\mathbf{W}}_{2m\times n} = \mathbf{U}_{2m\times 4} \mathbf{D}_{4\times 4} \mathbf{V}_{n\times 4}^{\mathrm{T}}$

Projective Factorization

- 1. Start with an initial estimate of the depths $w_{\mathbf{j}}^{\mathbf{i}}$
- 2. From the measurement matrix **W**, find the nearest rank 4 approximation using the SVD and decompose to find the camera matrices and 3D points
- 3. Reproject the points into each image to obtain new estimates of the depths and repeat from step 2

Reconstruction from Video Sequences

- Compute interest points in each image
- Compute interest point correspondences between image pairs
- Compute fundamental matrix **F** for each image pair
- Initial reconstruction
- Bundle-adjust the cameras and 3D structure to minimize projection errors

Issues for Videos

- Small baseline between image pairs
 - Advantage: having similar images facilitates finding point correspondences
 - Disadvantage: 3D structure is estimated poorly for each image pair

• Solutions:

- Use consecutive images for point correspondences,
 and images far apart for 3D structure reconstruction
- Make small batches and combine them by least square
- Use recursive least square method

Examples of 3D Reconstruction

Examples of 3D Reconstruction

References

- Multiple View Geometry in Computer Vision, R. Hartley and A. Zisserman, Cambridge University Press, 2000.
- D. Forsyth and J. Ponce. Computer Vision: A Modern Approach, http://www.cs.berkeley.edu/~daf/book3chaps.html
 - Geometry of Multiple Views (Chapter 12)
 - Stereopsis (Chapter 13)
 - Affine Structure from Motion (Chapter 14)
 - Projective Structure from Motion (Chapter 15)