Epipolar Geometry and the Fundamental Matrix

Review about Camera Matrix P (from Lecture on Calibration)

• Between the world coordinates $\mathbf{X}=(X_s, X_s, X_s, X_s, 1)$ of a scene point and the coordinates $\mathbf{x}=(u',v',w')$ of its projection, we have the following linear $x_{pix} = u'/w'$ transformation: $y_{nix} = v'/w'$

$$\mathbf{x} = \mathbf{P} \mathbf{X}$$

• P is a 3x4 matrix that completely represents the mapping from the scene to the image and is therefore called a "camera".

Central Projection

If world and image points are represented by homogeneous vectors, central projection is a linear transformation:

$$x_i = f \frac{x_s}{z_s}$$

$$y_i = f \frac{y_s}{z_s}$$

$$x_{i} = f \frac{x_{s}}{z_{s}}$$

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{s} \\ y_{s} \\ z_{s} \\ 1 \end{bmatrix}$$

$$x_{i} = u/w, \quad y_{i} = v/w$$

$$x_{i} = u/w$$

$$x_i = u / w$$
, $y_i = v / w$

Pixel Components

Transformation uses:

- principal point (x_0, y_0)
- scaling factors k_x and k_y

$$x_i = f \, \frac{x_s}{z_s}$$

$$y_i = f \frac{y_s}{z_s}$$

uses:
$$x(x_0, y_0)$$

$$k_x \text{ and } k_y$$

$$y_0$$

$$y_{pix}$$

$$y_{pix}$$

$$y_0$$

$$y_{pix}$$

$$y_0$$

$$y$$

$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \begin{bmatrix} \mathbf{a}_x & 0 & x_0 & 0 \\ 0 & \mathbf{a}_y & y_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_s \\ y_s \\ z_s \\ 1 \end{bmatrix} \text{ with } \mathbf{a}_x = f k_x \qquad then \qquad x_{pix} = u' / w' \\ \mathbf{a}_y = f k_y \qquad y_{pix} = v' / w'$$

$$\mathbf{a}_{x} = f k_{x}$$
 $x_{pix} = u'/$
 $\mathbf{a}_{y} = f k_{y}$ then $y_{pix} = v'/$

Internal Camera Parameters

$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \begin{bmatrix} \mathbf{a}_x & s & x_0 & 0 \\ 0 & \mathbf{a}_y & y_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_s \\ y_s \\ z_s \\ 1 \end{bmatrix} \text{ with } \begin{vmatrix} \mathbf{a}_x = f k_x \\ \mathbf{a}_y = -f k_y \end{vmatrix} \qquad x_{pix} = u' / w'$$

$$\begin{bmatrix} \mathbf{a}_{x} & s & x_{0} & 0 \\ 0 & \mathbf{a}_{y} & y_{0} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{x} & s & x_{0} \\ 0 & \mathbf{a}_{y} & y_{0} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{I}_{3} & \mathbf{I}_{3} & \mathbf{I}_{3} \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- a_x and a_y "focal lengths" in pixels
- x_0 and y_0 coordinates of image center in pixels
- •Added parameter *S* is skew parameter

- K is called calibration matrix. Five degrees of freedom.
 - •**K** is a 3x3 upper triangular matrix

From Camera Coordinates to World Coordinates

Using Camera Center Position in World Coordinates

• We can use - R C instead of T

$$\begin{bmatrix} x_S \\ y_S \\ z_S \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{R} \, \tilde{\mathbf{C}} \\ \mathbf{0_3^T} & 1 \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \\ 1 \end{bmatrix}$$

Linear Transformation from World Coordinates to Pixels

 Combine camera projection and coordinate transformation matrices into a single matrix P

$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{I}_3 \\ \mathbf{I}_3 \end{bmatrix} + \mathbf{0}_3 \begin{bmatrix} x_s \\ y_s \\ z_s \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{K}_s \\ \mathbf{I}_s \\ \mathbf{I}_s \end{bmatrix} = \begin{bmatrix} \mathbf{R}_s - \mathbf{R} \tilde{\mathbf{C}} \\ \mathbf{0}_3^T \end{bmatrix} \begin{bmatrix} X_s \\ Y_s \\ Z_s \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{I}_3 \\ \mathbf{I}_s \end{bmatrix} + \mathbf{0}_3 \begin{bmatrix} \mathbf{R}_s - \mathbf{R} \tilde{\mathbf{C}} \\ \mathbf{0}_3^T \end{bmatrix} \begin{bmatrix} X_s \\ Y_s \\ Z_s \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \mathbf{P} \begin{bmatrix} X_s \\ Y_s \\ Z_s \\ 1 \end{bmatrix}$$

$$\mathbf{X} = \mathbf{P} \mathbf{X}$$

Properties of Matrix P

• Further simplification of **P**:

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I}_{3} & | & \mathbf{0}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{R} \widetilde{\mathbf{C}} \\ \mathbf{0}_{3}^{\mathrm{T}} & 1 \end{bmatrix} \mathbf{X}$$

$$\begin{bmatrix} \mathbf{I}_{3} & | & \mathbf{0}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{R} \widetilde{\mathbf{C}} \\ \mathbf{0}_{3}^{\mathrm{T}} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{R} \widetilde{\mathbf{C}} \end{bmatrix} = \mathbf{R} \begin{bmatrix} \mathbf{I}_{3} & | & -\widetilde{\mathbf{C}} \end{bmatrix}$$

$$\mathbf{x} = \mathbf{K} \mathbf{R} \begin{bmatrix} \mathbf{I}_{3} & | & -\widetilde{\mathbf{C}} \end{bmatrix} \mathbf{X}$$

$$\mathbf{P} = \mathbf{K} \mathbf{R} \left[\mathbf{I}_3 \quad | \quad -\widetilde{\mathbf{C}} \right]$$

- **P** has 11 degrees of freedom:
 - 5 from triangular calibration matrix K, 3 from R and 3 from C
- P is a fairly general 3 x 4 matrix
 - •left 3x3 submatrix **KR** is non-singular

Cross-Product in Matrix Form

• If $\mathbf{a} = (a_1, a_2, a_3)^{\mathrm{T}}$ is a 3-vector, then one can define a corresponding skew-symmetric

matrix
$$[\mathbf{a}]_{\times} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$

- The cross-product of 2 vectors \mathbf{a} and \mathbf{b} can be written $\mathbf{a} \times \mathbf{b} = [\mathbf{a}] \mathbf{b}$
- Matrix [a]_x is singular. Its null vector (right or left) is a
- $\mathbf{b} \cdot (\mathbf{a} \times \mathbf{b}) = 0 \Leftrightarrow \mathbf{b}^{\mathrm{T}} [\mathbf{a}]_{\times} \mathbf{b} = \mathbf{0} \ \forall \mathbf{a}, \mathbf{b}$
- $\mathbf{c}^{\mathrm{T}}[\mathbf{a}]_{\times}\mathbf{b} = -\mathbf{b}^{\mathrm{T}}[\mathbf{a}]_{\times}\mathbf{c} \Rightarrow \mathbf{F}^{\mathrm{T}}[\mathbf{a}]_{\times}\mathbf{F} = [\mathbf{s}]_{\times}\forall\mathbf{F},\mathbf{a}$

Definition of Epipolar Geometry

 Projective geometry between two views

- Independent of scene structure
- Depends only on the cameras' internal parameters and relative pose of cameras
- Fundamental matrix **F** encapsulates this geometry

$$\mathbf{x_i^T} \mathbf{F} \mathbf{x_i} = 0$$

for any pair of corresponding points $\mathbf{x_i}$ and $\mathbf{x'_i}$ in the 2 images

Relation between Image Points x_i and x_i'

- Camera centers C and C', scene point X_i, image points x_i and x'_i belong to a common epipolar plane P
- Epipoles e and e'
 - On baseline CC'
- Epipolar lines I and I'

Pencils of Epipolar Lines

Computation of **F**

- **F** can be computed from correspondences between image points alone
- No knowledge of camera internal parameters required
- No knowledge of relative pose required

$$\mathbf{x_i^T} \mathbf{F} \mathbf{x_i} = 0$$

for any pair of corresponding points $\mathbf{x_i}$ and $\mathbf{x'_i}$ in the 2 images

Finding the Fundamental Matrix from Known Cameras **P** and **P'** (Outline)

X

- Pick up an image point **x** in camera **P**
- Find one scene point X on ray of x in camera P
- Find the image x' of X in camera P'
- Find epipole e' as image of C in camera P' is epipole = P'C
- Find epipolar line l' from e' to x' in P' as function of x
- The fundamental matrix F is defined by
 l'=F x
- \mathbf{x} ' belongs to \mathbf{l} ', so \mathbf{x} ' \mathbf{l} '= $\mathbf{0}$, so \mathbf{x} ' \mathbf{r} \mathbf{F} \mathbf{x} = $\mathbf{0}$
- The fundamental matrix \mathbf{F} is alternately defined by $\mathbf{x}^{\prime T} \mathbf{F} \mathbf{x} = \mathbf{0}$

Finding the Fundamental Matrix from Known Cameras **P** and **P'** (Details)

- Pick up an image point x in camera P
- Find one scene point on ray from C to x
 - Point $X = P^+x$ satisfies x = PX
 - $P^+ = P^T (P P^T)^{-1}$, so $PX = P P^T (P P^T)^{-1} x = x$

- Image of C in camera P' is epipole e' = P'C
- Epipolar line of \mathbf{x} in \mathbf{P} ' is

$$l'=(e')\times(P'P^+x)=[e']_{\times}P'P^+x$$

- l'=F x defines F fundamental matrix
- \mathbf{x} ' belongs to \mathbf{l} ', so \mathbf{x} ' \mathbf{l} '= $\mathbf{0}$, so \mathbf{x} ' \mathbf{r} \mathbf{F} \mathbf{x} = $\mathbf{0}$

$$\Rightarrow \mathbf{F} = [\mathbf{P'C}]_{\times} \mathbf{P'P}^{+}$$

Properties of Fundamental Matrix F

- Matrix 3x3 (since $\mathbf{x}^T \mathbf{F} \mathbf{x} = \mathbf{0}$)
- If ${\bf F}$ is fundamental matrix of camera pair $({\bf P,P'})$ then the fundamental matrix ${\bf F'}$ of camera pair $({\bf P',P})$ is equal to ${\bf F^T}$
 - $\mathbf{x}^T \mathbf{F}' \mathbf{x}' = \mathbf{0}$ implies $\mathbf{x}'^T \mathbf{F}'^T \mathbf{x} = \mathbf{0}$, so $\mathbf{F}' = \mathbf{F}^T$
- Epipolar line of \mathbf{x} is $\mathbf{l'} = \mathbf{F} \mathbf{x}$
- Epipolar line of \mathbf{x} is $\mathbf{l} = \mathbf{F}^T \mathbf{x}$

More Properties of **F**

- Epipole e' is left null space of F, and e is right null space.
 - All epipolar lines l' contains epipole e', so $e'^T l' = 0$, i.e. $e'^T F x = 0$ for all x. Therefore $e'^T F = 0$ Similarly $e^T F^T x' = 0$ implies $e^T F^T = 0$, therefore F e = 0
- **F** is of rank 2 because $\mathbf{F} = [\mathbf{e'}]_{\mathbf{x}} \mathbf{P'P^+}$ and $[\mathbf{e'}]_{\mathbf{x}}$ is of rank 2
- **F** has 7 degrees of freedom
 - There are 9 elements, but scaling is not significant
 - Det $\mathbf{F} = 0$ removes one degree of freedom

Mapping between

Epipolar Lines (a Homography)

• Define x as intersection between line

l and a line k (k does not pass through epipole e):

$$\mathbf{x} = \mathbf{k} \times \mathbf{l} = [\mathbf{k}]_{\mathbf{x}} \mathbf{l}$$

$$l' = F x = F[k]_x l$$

• Line e does not pass through point e

$$l' = F x = F[e]_x l$$

Similarly

$$l = F^T x' = F^T [e']_x l'$$

Retrieving Camera Matrices P and P' from Fundamental Matrix F

- General form of **P** is $P = KR[I_3 \mid -\tilde{C}]$
- Select world coordinates as camera coordinates of first camera, select focal length = 1, and count pixels from the principal point. Then $P=[I_3 \mid 0]$
- Then **P'** = [**S F** | **e'**] with **S** any skew-symmetric matrix is a solution. Proof:
 - \mathbf{x}' $\mathbf{F} \mathbf{X} = \mathbf{X}^{\mathsf{T}} \mathbf{P}'^{\mathsf{T}} \mathbf{F} \mathbf{P} \mathbf{X}$
 - $P'^TFP = [SF|e']^TF[I_3|0]$ is skew-symmetric
 - For any skew-symmetric matrix S' and any X, X^TS ' X = 0
- $S = [e']_x$ is a good choice. Therefore $P' = [[e']_x F | e']$

[S F | e']^T F [I_3 | 0] is skew-symmetric

$$[\mathbf{SF} \mid \mathbf{e'}]^{\mathrm{T}} \mathbf{F} [\mathbf{I}_{3} \mid \mathbf{0}_{3}] = \begin{bmatrix} \mathbf{F}^{\mathrm{T}} \mathbf{S}^{\mathrm{T}} \mathbf{F} & \mathbf{0}_{3} \\ \mathbf{e'}^{\mathrm{T}} \mathbf{F} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{F}^{\mathrm{T}} \mathbf{S}^{\mathrm{T}} \mathbf{F} & \mathbf{0}_{3} \\ \mathbf{0}_{3}^{\mathrm{T}} & \mathbf{0} \end{bmatrix}$$

- $e^{T} F=0$ because e^{T} is left null space of F
- **F**^T**S**^T**F** is skew-symmetric for any **F** and any skew-symmetric **S**

Essential Matrix E

- Specialization of fundamental matrix for calibrated cameras and normalized coordinates
 - x = P X = K [R | T] X
 - Normalize coordinates: $\mathbf{x_0} = \mathbf{K^{-1}} \mathbf{x} = [\mathbf{R} \mid \mathbf{T}] \mathbf{X}$
- Consider pair of normalized cameras
 - $P = [I \mid 0], P' = [R \mid T]$
- Then we compute $\mathbf{F} = [\mathbf{P'C}]_{\times} \mathbf{P'P}^{+}$

$$[P'C]_{\times} = [[R|T][0001]^{T}]_{\times} = [T]_{\times}$$

$$\mathbf{P}^{+} = \begin{bmatrix} \mathbf{I}_{3} \\ \mathbf{0}_{3}^{\mathrm{T}} \end{bmatrix}, \mathbf{P}' \mathbf{P}^{+} = \mathbf{R} \Rightarrow \mathbf{F} = [\mathbf{T}]_{\times} \mathbf{R} \equiv \mathbf{E}$$

Essential Matrix and Fundamental Matrix

- The defining equation for essential matrix is $\mathbf{x_0}^T \mathbf{E} \mathbf{x_0} = \mathbf{0}$, with
 - $\mathbf{x}_0 = \mathbf{K}^{-1} \mathbf{x}$
 - $x_0' = K'^{-1} x'$
- Therefore $\mathbf{x}^{\mathsf{T}} \mathbf{K}^{\mathsf{T}} \mathbf{E} \mathbf{K}^{\mathsf{T}} \mathbf{x} = \mathbf{0}$
- Comparing with $\mathbf{x}^T \mathbf{F} \mathbf{x} = \mathbf{0}$, we get

$$E = K^T F K$$

Computing Fundamental Matrix from Point Correspondences

• The fundamental matrix is defined by the equation $\mathbf{x_i^T} \mathbf{F} \mathbf{x_i} = 0$ for any pair of corresponding points

 $\mathbf{x_i}$ and $\mathbf{x'_i}$ in the 2 images

• The equation for a pair of points

$$(x, y, 1)$$
 and $(x', y', 1)$ is: $x'x f_{11} + x'y f_{12} + x'f_{13} + y'x f_{21} + y'y f_{22} + y'f_{23} + y'x f_{21} + y'y f_{22} + y'f_{23} + y'x f_{23} + y'x f_{24} + y'x f_{25} + y$

• For *n* point matches: $+x f_{31} + y f_{32} + f_{33} = 0$

$$\mathbf{A} \mathbf{f} = \begin{bmatrix} x'_1 x_1 & x'_1 y_1 & x'_1 & y'_1 x_1 & y'_1 y_1 & y'_1 & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x'_n x_n & x'_n y_n & x'_n & y'_n x_n & y'_n y_n & y'_n & x_n & y_n & 1 \end{bmatrix} \mathbf{f} = 0$$

Computing Fundamental Matrix from Point Correspondences

- We have a homogeneous set of equations $\mathbf{A} \mathbf{f} = 0$
- **f** can be determined only up to a scale, so there are 8 unknowns, and at least 8 point matchings are needed
 - hence the name "8 point algorithm"
- The least square solution is the singular vector corresponding the smallest singular value of A, i.e. the last column of V in the SVD A = U D V^T

Next Class

• 3D Reconstruction from Multiple Views

References

• Multiple View Geometry in Computer Vision, R. Hartley and A. Zisserman, Cambridge University Press, 2000.