Epipolar Geometry and the Fundamental Matrix

Review about Camera Matrix \mathbf{P}

(from Lecture on Calibration)

- Between the world coordinates $\mathbf{X}=\left(X_{\mathrm{s}}, X_{\mathrm{s}}, X_{\mathrm{s}}, 1\right)$ of a scene point and the coordinates $\mathbf{x}=\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$ of its projection, we have the following linear transformation:

$$
\begin{aligned}
& x_{p i x}=u^{\prime} / w^{\prime} \\
& y_{p i x}=v^{\prime} / w^{\prime}
\end{aligned}
$$

with

$$
\mathbf{x}=\mathbf{P} \mathbf{X}
$$

- P is a $3 x 4$ matrix that completely represents the mapping from the scene to the image and is therefore called a "camera".

Central Projection

If world and image points are represented by homogeneous vectors, central projection is a linear transformation:

$$
\begin{aligned}
& x_{i}=f \frac{x_{s}}{z_{s}} \\
& y_{i}=f \frac{y_{s}}{z}
\end{aligned}
$$

$$
\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
1
\end{array}\right]
$$

$$
x_{i}=u / w, y_{i}=v / w
$$

Image plane Scene point

Pixel Components

Transformation uses:

- principal point $\left(x_{0}, y_{0}\right)$
- scaling factors k_{x} and k_{y}

$$
\begin{array}{ll}
x_{i}=f \frac{x_{s}}{z_{s}} & x_{p i x}=k_{x} x_{i}+x_{0}=f k_{x} \frac{x_{s}+z_{s} x_{0}}{z_{s}} \\
y_{i}=f \frac{y_{s}}{z_{s}} & y_{p i x}=k_{y} y_{i}+y_{0}=f k_{y} \frac{y_{s}+z_{s} y_{0}}{z_{s}}
\end{array}
$$

$$
\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\alpha_{x} & 0 & x_{0} & 0 \\
0 & \alpha_{y} & y_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
1
\end{array}\right] \text { with } \begin{aligned}
& \alpha_{x}=f k_{x} \\
& \alpha_{y}=f k_{y}
\end{aligned} \quad \text { then } \quad \begin{aligned}
& x_{p i x}=u^{\prime} / w^{\prime} \\
& y_{p i x}=v^{\prime} / w^{\prime}
\end{aligned}
$$

Internal Camera Parameters

$$
\begin{aligned}
& {\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\alpha_{x} & s & x_{0} & 0 \\
0 & \alpha_{y} & y_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
1
\end{array}\right] \text { with }\left[\begin{array}{l}
\alpha_{x}=f k_{x} \\
\alpha_{y}=-f k_{y}
\end{array} \begin{array}{l}
x_{p i x}=u^{\prime} / w^{\prime} \\
y_{p i x}=v^{\prime} / w^{\prime}
\end{array}\right.} \\
& {\left[\begin{array}{cccc}
\alpha_{x} & s & x_{0} & 0 \\
0 & \alpha_{y} & y_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
0 & \alpha_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]=\mathbf{K}\left[\begin{array}{lll}
\mathbf{I}_{3} & \mid & \mathbf{0}_{3}
\end{array}\right]}
\end{aligned}
$$

- α_{x} and α_{y} "focal lengths" in pixels
- x_{0} and y_{0} coordinates of image center in pixels
- Added parameter S is skew parameter

- \mathbf{K} is called calibration matrix. Five degrees of freedom.
$\cdot \mathbf{K}$ is a 3×3 upper triangular matrix

From Camera Coordinates to World Coordinates

Using Camera Center Position in World Coordinates

- We can use - $\mathbf{R} \widetilde{\mathbf{C}}$ instead of \mathbf{T}

$$
\left[\begin{array}{c}
x_{s} \\
y_{S} \\
z_{S} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R} \tilde{\mathbf{C}}
\end{array}\right]\left[\begin{array}{c}
X_{S} \\
Y_{S} \\
\mathbf{0}_{3}^{\mathrm{T}} \\
Z_{S} \\
1
\end{array}\right]
$$

Linear Transformation from World Coordinates to Pixels

- Combine camera projection and coordinate transformation matrices into a single matrix \mathbf{P}

$$
\begin{aligned}
& {\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
w^{\prime}
\end{array}\right]=\mathbf{K}\left[\begin{array}{lll}
\mathbf{I}_{3} & \mid & \mathbf{0}_{\mathbf{3}}\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
1
\end{array}\right]
\end{array}\right]} \\
& {\left[\begin{array}{c}
x_{S} \\
y_{S} \\
z_{S} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R} \tilde{\mathbf{C}}] \\
\mathbf{0}_{\mathbf{3}}^{\mathrm{T}} & 1
\end{array}\right]\left[\begin{array}{c}
X_{S} \\
Y_{S} \\
Z_{S} \\
1
\end{array}\right]} \\
& \begin{aligned}
& \Rightarrow\left[\begin{array}{l}
u^{\prime} \\
v^{\prime} \\
w^{\prime}
\end{array}\right]=\mathbf{K}\left[\begin{array}{lll}
\mathbf{I}_{3} & \mid & \mathbf{0}_{3}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R} \tilde{\mathbf{C}} \\
\mathbf{0}_{\mathbf{3}}^{\mathrm{T}} & 1
\end{array}\right]\left[\begin{array}{l}
X_{S} \\
Y_{S} \\
Z_{S} \\
1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
w^{\prime}
\end{array}\right]=\mathbf{P}\left[\begin{array}{c}
X_{S} \\
Y_{S} \\
Z_{S} \\
1
\end{array}\right] \quad \mathbf{x}=\mathbf{P X}
\end{aligned}
\end{aligned}
$$

Properties of Matrix \mathbf{P}

- Further simplification of \mathbf{P} :

$$
\begin{aligned}
& \mathbf{x}=\mathbf{K}\left[\begin{array}{lll}
\mathbf{I}_{3} & \mid & \mathbf{0}_{3}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R} \tilde{\mathbf{C}} \\
\mathbf{0}_{3}^{\mathrm{T}} & 1
\end{array}\right] \mathbf{X} \\
& \begin{array}{lll}
{\left[\begin{array}{lll}
\mathbf{I}_{3} & \mid & \mathbf{0}_{3}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R} \\
\mathbf{0}_{3}^{\mathrm{T}} & 1
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{R} & -\mathbf{R} \tilde{\mathbf{C}}
\end{array}\right]=\mathbf{R}\left[\begin{array}{lll}
\mathbf{I}_{3} & \mid & -\tilde{\mathbf{C}}
\end{array}\right]} \\
\mathbf{x}=\mathbf{K} \mathbf{R}\left[\begin{array}{lll}
\mathbf{I}_{3} & \mid & -\tilde{\mathbf{C}}
\end{array}\right] \mathbf{X} \\
\mathbf{P}=\mathbf{K}\left[\begin{array}{lll}
\mathbf{I}_{3} & \mid & -\tilde{\mathbf{C}}
\end{array}\right]
\end{array}
\end{aligned}
$$

- \mathbf{P} has 11 degrees of freedom:
- 5 from triangular calibration matrix $\mathbf{K}, 3$ from \mathbf{R} and 3 from $\widetilde{\mathbf{C}}$
- \mathbf{P} is a fairly general 3×4 matrix
-left 3×3 submatrix $\mathbf{K R}$ is non-singular

Cross-Product in Matrix Form

- If $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)^{\mathrm{T}}$ is a 3-vector, then one can define a corresponding skew-symmetric matrix

$$
[\mathbf{a}]_{x}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]
$$

- The cross-product of 2 vectors \mathbf{a} and \mathbf{b} can be written $\mathbf{a} \times \mathbf{b}=[\mathbf{a}]_{\times} \mathbf{b}$
- Matrix [a] $]_{\mathbf{x}}$ is singular. Its null vector (right or left) is a
- $\quad \mathbf{b} .(\mathbf{a} \times \mathbf{b})=0 \Leftrightarrow \mathbf{b}^{\mathrm{T}}[\mathbf{a}]_{\times} \mathbf{b}=\mathbf{0} \forall \mathbf{a}, \mathbf{b}$
- $\quad \mathbf{c}^{\mathbf{T}}[\mathbf{a}]_{\times} \mathbf{b}=-\mathbf{b}^{\mathbf{T}}[\mathbf{a}]_{\times} \mathbf{c} \Rightarrow \mathbf{F}^{\mathrm{T}}[\mathbf{a}]_{\times} \mathbf{F}=[\mathbf{s}]_{\times} \forall \mathbf{F}, \mathbf{a}$

Definition of Epipolar Geometry

- Projective geometry between two views
- Independent of scene structure

- Depends only on the cameras' internal parameters and relative pose of cameras
- Fundamental matrix \mathbf{F} encapsulates this geometry

$$
\mathbf{x}_{\mathrm{i}}^{\prime \mathrm{T}} \mathbf{F} \mathbf{x}_{\mathrm{i}}=0
$$

for any pair of
corresponding points
$\mathbf{x}_{\mathbf{i}}$ and $\mathbf{x}_{\mathbf{i}}{ }_{\mathbf{i}}$ in the 2 images

Relation between

Image Points x_{i} and $\mathrm{x}_{\mathrm{i}}{ }^{\prime}$

- Camera centers C and C^{\prime}, scene point \mathbf{X}_{i}, image points $\mathbf{x}_{\mathbf{i}}$ and $\mathbf{x}_{\mathbf{i}}^{\prime}$ belong to a common epipolar plane π
- Epipoles e and e,
- On baseline CC'
- Epipolar lines \mathbf{l} and \mathbf{l} '

Pencils of Epipolar Lines

Computation of \mathbf{F}

- \mathbf{F} can be computed from correspondences between image points alone
- No knowledge of camera internal parameters required
- No knowledge of relative pose required

$$
\mathbf{x}_{\mathrm{i}}^{\prime \mathrm{T}} \mathbf{F} \mathbf{x}_{\mathrm{i}}=0
$$

for any pair of
corresponding points
$\mathbf{x}_{\mathbf{i}}$ and $\mathbf{x}_{\mathbf{i}}{ }_{\mathbf{i}}$ in the 2 images

Finding the Fundamental Matrix from Known Cameras \mathbf{P} and \mathbf{P}^{\prime} (Outline)

- Pick up an image point \mathbf{x} in camera \mathbf{P}
- Find one scene point \mathbf{X} on ray of \mathbf{x} in camera \mathbf{P}
- Find the image \mathbf{x}^{\prime} of \mathbf{X} in camera \mathbf{P}^{\prime}
- Find epipole \mathbf{e}^{\prime} as image of \mathbf{C} in camera \mathbf{P}, is epipole $=\mathbf{P}^{\mathbf{\prime}} \mathbf{C}$
- Find epipolar line \mathbf{l}^{\prime} from \mathbf{e}^{\prime} to \mathbf{x}^{\prime} in \mathbf{P}^{\prime} as
 function of \mathbf{x}
- The fundamental matrix \mathbf{F} is defined by l'=F x
- \mathbf{x}^{\prime} belongs to \mathbf{l}^{\prime}, so $\mathbf{x}^{\prime}{ }^{\mathbf{T}} \mathbf{l}^{\prime}=\mathbf{0}$, so $\mathbf{x}^{\mathbf{\prime}} \mathbf{F} \mathbf{x}=\mathbf{0}$
- The fundamental matrix \mathbf{F} is alternately defined by $\mathbf{x}^{\mathbf{T}} \mathbf{F} \mathbf{x}=\mathbf{0}$

Finding the Fundamental Matrix

from Known Cameras \mathbf{P} and \mathbf{P}^{\prime} (Details)

- Pick up an image point \mathbf{x} in camera \mathbf{P}
- Find one scene point on ray from \mathbf{C} to \mathbf{x}
- Point $\mathbf{X}=\mathbf{P}^{+} \mathbf{x}$ satisfies $\mathbf{x}=\mathbf{P X}$
- $\mathbf{P}^{+}=\mathbf{P}^{\mathrm{T}}\left(\mathbf{P} \mathbf{P}^{\mathrm{T}}\right)^{-1}$, so $\mathbf{P X}=\mathbf{P} \mathbf{P}^{\mathrm{T}}\left(\mathbf{P} \mathbf{P}^{\mathrm{T}}\right)^{-1} \mathbf{x}=\mathbf{x}$
- Image of this point in camera \mathbf{P}^{\prime} is $\mathbf{x}^{\prime}=\mathbf{P}^{\prime} \mathbf{X}=\mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x}$

- Image of \mathbf{C} in camera \mathbf{P}^{\prime} is epipole $\mathbf{e}^{\prime}=\mathbf{P}^{\prime} \mathbf{C}$
- Epipolar line of \mathbf{x} in \mathbf{P}^{\prime} is

$$
\mathbf{l}^{\prime}=\left(\mathbf{e}^{\prime}\right) \times\left(\mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x}\right)=\left[\mathbf{e}^{\prime}\right]_{\times} \mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x}
$$

- $\mathbf{l}^{\prime}=\mathbf{F} \mathbf{x}$ defines \mathbf{F} fundamental matrix

$$
\Rightarrow \mathbf{F}=\left[\mathbf{P}^{\prime} \mathbf{C}\right]_{\times} \mathbf{P}^{\prime} \mathbf{P}^{+}
$$

- \mathbf{x}^{\prime} belongs to \mathbf{l}^{\prime}, so $\mathbf{x}^{\boldsymbol{\prime}}{ }^{\mathbf{T}} \mathbf{l}^{\prime}=\mathbf{0}$, so $\mathbf{x}^{\mathbf{\prime}}{ }^{\mathbf{F}} \mathbf{F} \mathbf{x}=\mathbf{0}$

Properties of Fundamental Matrix F

- Matrix 3×3 (since $\mathbf{x}^{\mathbf{T}} \mathbf{F} \mathbf{x}=\mathbf{0}$)
- If \mathbf{F} is fundamental matrix of camera pair ($\mathbf{P}, \mathbf{P}^{\prime}$) then the fundamental matrix \mathbf{F} ' of camera pair $\left(\mathbf{P}^{\prime}, \mathbf{P}\right)$ is equal to $\mathbf{F}^{\mathbf{T}}$
$\mathbf{- ~}^{\prime} \mathbf{x}^{\mathbf{T}} \mathbf{F}^{\prime} \mathbf{x}^{\mathbf{\prime}}=\mathbf{0}$ implies $\mathbf{x}^{\mathbf{T}} \mathbf{F}^{, \mathbf{T}} \mathbf{x}=\mathbf{0}$, so $\mathbf{F}^{\prime}=\mathbf{F}^{\mathbf{T}}$
- Epipolar line of \mathbf{x} is $\mathbf{l}=\mathbf{F} \mathbf{x}$
- Epipolar line of \mathbf{x}^{\prime} is $\mathbf{l}=\mathbf{F}^{\mathbf{T}} \mathbf{x}^{\text {, }}$

More Properties of \mathbf{F}

- Epipole $\mathbf{e}^{\mathbf{}}$ is left null space of \mathbf{F}, and \mathbf{e} is right null space.
- All epipolar lines \mathbf{l}^{\prime} contains epipole $\mathbf{e}^{\mathbf{\prime}}$, so $\mathbf{e}^{\mathbf{T}} \mathbf{l} \mathbf{l}^{\prime}=\mathbf{0}$, i.e. $\mathbf{e}^{\mathbf{T}} \mathbf{F} \mathbf{x}=\mathbf{0}$ for all \mathbf{x}. Therefore $\mathbf{e}^{\mathbf{T}} \mathbf{F}=\mathbf{0}$ Similarly $\mathbf{e}^{\mathbf{T}} \mathbf{F}^{\mathbf{T}} \mathbf{x}^{\mathbf{\prime}}=\mathbf{0}$ implies $\mathbf{e}^{\mathbf{T}} \mathbf{F}^{\mathbf{T}}=\mathbf{0}$, therefore $\mathbf{F e}=\mathbf{0}$
- \mathbf{F} is of rank 2 because $\mathbf{F}=\left[\mathbf{e}^{\prime}\right]_{\mathbf{x}} \mathbf{P}^{\prime} \mathbf{P}^{+}$and $\left[\mathbf{e}^{\prime}\right]_{\mathbf{x}}$ is of rank 2
- \mathbf{F} has 7 degrees of freedom
- There are 9 elements, but scaling is not significant
- Det $\mathbf{F}=0$ removes one degree of freedom

Mapping between Epipolar Lines (a Homography)

- Define \mathbf{x} as intersection between line \mathbf{l} and a line \mathbf{k} (\mathbf{k} does not pass through epipole e):

$$
\begin{aligned}
& \mathbf{x}=\mathbf{k} \times \mathbf{l}=[\mathbf{k}]_{\mathbf{x}} \mathbf{l} \\
& \mathbf{l}^{\prime}=\mathbf{F} \mathbf{x}=\mathbf{F}[\mathbf{k}]_{\mathbf{x}} \mathbf{l}
\end{aligned}
$$

- Line \mathbf{e} does not pass through point \mathbf{e}

$$
\mathbf{l}^{\prime}=\mathbf{F} \mathbf{x}=\mathbf{F}[\mathbf{e}]_{\mathbf{x}} \mathbf{l}
$$

- Similarly

$$
\mathbf{l}=\mathbf{F}^{\mathrm{T}} \mathbf{x}^{\prime}=\mathbf{F}^{\mathrm{T}}\left[\mathbf{e}^{\prime}\right]_{\mathbf{x}} \mathbf{l}^{\prime}
$$

Retrieving Camera Matrices \mathbf{P} and $\mathbf{P}^{\mathbf{P}}$ from Fundamental Matrix \mathbf{F}
 - General form of \mathbf{P} is $\mathbf{P}=\mathbf{K} \mathbf{R}\left[\begin{array}{lll}\mathbf{I}_{3} & -\widetilde{\mathbf{C}}\end{array}\right]$

- Select world coordinates as camera coordinates of first camera, select focal length $=1$, and count pixels from the principal point. Then $\mathbf{P}=\left[\mathbf{I}_{\mathbf{3}} \mid \mathbf{0}\right]$
- Then $\mathbf{P}^{\prime}=\left[\mathbf{S} \mathbf{F} \mid \mathbf{e}^{\prime}\right]$ with \mathbf{S} any skew-symmetric matrix is a solution. Proof:
- $\mathbf{x}^{\text {' }}{ }^{\mathbf{T}} \mathbf{F x}=$ X $^{\mathrm{T}} \mathbf{P}^{\mathrm{T}} \mathbf{F P X}$
- $\mathbf{P}^{\boldsymbol{\prime} \mathbf{T}} \mathbf{F P}=\left[\mathbf{S} \mathbf{F} \mid \mathbf{e}^{\mathbf{\prime}}\right]^{\mathbf{T}} \mathbf{F}\left[\mathbf{I}_{3} \mid \mathbf{0}\right]$ is skew-symmetric
- For any skew-symmetric matrix \mathbf{S}^{\prime} and any \mathbf{X}, $\mathbf{X}^{\mathrm{T}} \mathbf{S}^{\prime} \mathbf{X}=\mathbf{0}$
- $\mathbf{S}=\left[\mathbf{e}^{\prime}\right]_{\mathbf{x}}$ is a good choice. Therefore $\mathbf{P}^{\prime}=\left[\left[\mathbf{e}^{\prime}\right]_{\mathbf{x}} \mathbf{F} \mid \mathbf{e}^{\prime}\right]$

$\left[\mathbf{S} \mathbf{F} \mid \mathbf{e}^{\mathbf{\prime}}\right]^{\mathbf{T}} \mathbf{F}\left[\mathbf{I}_{\mathbf{3}} \mid \mathbf{0}\right]$ is skew-symmetric

$\left[\mathbf{S F} \mid \mathbf{e}^{\prime}\right]^{\mathrm{T}} \mathbf{F}\left[\mathbf{I}_{\mathbf{3}} \mid \mathbf{0}_{\mathbf{3}}\right]=\left[\begin{array}{cc}\mathbf{F}^{\mathrm{T}} \mathbf{S}^{\mathrm{T}} \mathbf{F} & \mathbf{0}_{\mathbf{3}} \\ \mathbf{e}^{\mathrm{T}} \mathbf{F} & 0\end{array}\right]=\left[\begin{array}{cc}\mathbf{F}^{\mathrm{T}} \mathbf{S}^{\mathrm{T}} \mathbf{F} & \mathbf{0}_{\mathbf{3}} \\ \mathbf{0}_{\mathbf{3}}{ }^{\mathrm{T}} & 0\end{array}\right]$

- $\mathbf{e}^{\mathbf{T}} \mathbf{F}=\mathbf{0}$ because $\mathbf{e}^{\mathbf{\prime}}$ is left null space of \mathbf{F}
- $\mathbf{F}^{\mathrm{T}} \mathbf{S}^{\mathbf{T}} \mathbf{F}$ is skew-symmetric for any \mathbf{F} and any skew-symmetric \mathbf{S}

Essential Matrix E

- Specialization of fundamental matrix for calibrated cameras and normalized coordinates
- $\mathbf{x}=\mathbf{P} \mathbf{X}=\mathbf{K}[\mathbf{R} \mid \mathbf{T}] \mathbf{X}$
- Normalize coordinates: $\mathbf{x}_{\mathbf{0}}=\mathbf{K}^{-1} \mathbf{x}=[\mathbf{R} \mid \mathbf{T}] \mathbf{X}$
- Consider pair of normalized cameras
- $\mathbf{P}=[\mathbf{I} \mid \mathbf{0}], \mathbf{P}^{\prime}=[\mathbf{R} \mid \mathbf{T}]$
- Then we compute $\mathbf{F}=\left[\mathbf{P}^{\prime} \mathbf{C}\right]_{x} \mathbf{P}^{\prime} \mathbf{P}^{+}$

$$
\left[\mathbf{P}^{\prime} \mathbf{C}\right]_{x}=\left[[\mathbf{R} \mid \mathbf{T}]\left[\begin{array}{llll}
\mathbf{0} & 0 & 0 & 1
\end{array}\right]^{\mathrm{T}}\right]_{\times}=[\mathbf{T}]_{\times}
$$

$$
\mathbf{P}^{+}=\left[\begin{array}{c}
\mathbf{I}_{3} \\
\mathbf{0}_{3}^{\mathbf{T}}
\end{array}\right], \mathbf{P}^{\prime} \mathbf{P}^{+}=\mathbf{R} \Rightarrow \mathbf{F}=[\mathbf{T}]_{\times} \mathbf{R} \equiv \mathbf{E}
$$

Essential Matrix and Fundamental Matrix

- The defining equation for essential matrix is $\mathbf{x}_{0}{ }^{\prime}{ }^{\mathbf{T}} \mathbf{E} \mathbf{x}_{0}=\mathbf{0}$, with
- $\mathrm{x}_{0}=\mathrm{K}^{-1} \mathbf{x}$
- $\mathrm{x}_{0}{ }^{\prime}=\mathrm{K}^{\prime-1}{ }^{\prime}{ }^{\prime}$
- Therefore $\mathbf{x}^{\mathbf{T}} \mathbf{K}^{,-\mathbf{T}} \mathbf{E} \mathbf{K}^{-1} \mathbf{x}=\mathbf{0}$
- Comparing with $\mathbf{x}^{, \mathbf{T}} \mathbf{F} \mathbf{x}=\mathbf{0}$, we get

$$
\mathbf{E}=\mathbf{K}^{{ }^{\top} \mathbf{T} \mathbf{F} \mathbf{K}, ~}
$$

Computing Fundamental Matrix from Point Correspondences

- The fundamental matrix is defined by the equation $\quad \mathbf{x}_{\mathbf{i}}^{\mathbf{T}} \mathbf{F} \mathbf{x}_{\mathbf{i}}=0 \quad$ for any pair of corresponding points $\mathbf{x}_{\mathbf{i}}$ and $\mathbf{x}_{\mathbf{i}}{ }_{\mathbf{i}}$ in the 2 images
- The equation for a pair of points

$$
\begin{aligned}
(x, y, 1) \text { and }\left(x^{\prime}, y^{\prime}, 1\right) \text { is: } & x^{\prime} x f_{11}+x^{\prime} y f_{12}+x^{\prime} f_{13}+ \\
& +y^{\prime} x f_{21}+y^{\prime} y f_{22}+y^{\prime} f_{23}+
\end{aligned}
$$

- For n point matches: $\quad+x f_{31}+y f_{32}+f_{33}=0$
$\mathbf{A} \mathbf{f}=\left[\begin{array}{ccccccccc}x_{1}^{\prime} x_{1} & x_{1}^{\prime} y_{1} & x_{1}^{\prime} & y_{1}^{\prime} x_{1} & y_{1}^{\prime} y_{1} & y_{1}^{\prime} & x_{1} & y_{1} & 1 \\ \vdots & \vdots \\ x_{n}^{\prime} x_{n} & x_{n}^{\prime} y_{n} & x_{n}^{\prime} & y_{n}^{\prime} x_{n} & y_{n}^{\prime} y_{n} & y_{n}^{\prime} & x_{n} & y_{n} & 1\end{array}\right] \mathbf{f}=0$

Computing Fundamental Matrix from Point Correspondences

- We have a homogeneous set of equations $\mathbf{A f}=0$
- f can be determined only up to a scale, so there are 8 unknowns, and at least 8 point matchings are needed
- hence the name " 8 point algorithm"
- The least square solution is the singular vector corresponding the smallest singular value of \mathbf{A}, i.e. the last column of \mathbf{V} in the $\operatorname{SVD} \mathbf{A}=\mathbf{U} \mathbf{D V}^{\mathbf{T}}$

Next Class

- 3D Reconstruction from Multiple Views

References

- Multiple View Geometry in Computer Vision, R. Hartley and A. Zisserman, Cambridge University Press, 2000.

