
Epipolar Geometry 
and the Fundamental Matrix



Review about Camera Matrix P
(from Lecture on Calibration)

• Between the world coordinates 
X=(Xs,  Xs,  Xs,  1) of a scene point and the 
coordinates x=(u’,v’,w’) of its projection, 
we have the following linear 
transformation:

• P is a 3x4 matrix that completely represents 
the mapping from the scene to the image 
and is therefore called a “camera”.
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If world and image points are represented by homogeneous 
vectors, central projection is a linear transformation:



Pixel Components
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Transformation uses: 

• principal point (x0, y0)

• scaling factors kx and ky Principal point



Internal Camera Parameters
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• αx and αy “focal lengths” in pixels 

• x0 and y0 coordinates of image center in pixels

•Added parameter s is skew parameter 

• K is called calibration matrix. Five degrees of freedom.

•K is a 3x3 upper triangular matrix
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From Camera Coordinates
to World Coordinates

Camera center C
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• We can use          instead of T

Using Camera Center Position in 
World Coordinates
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Linear Transformation from 
World Coordinates to Pixels
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• Combine camera projection and coordinate 
transformation matrices into a single matrix P



• P has 11 degrees of freedom:
• 5 from triangular calibration matrix K,  3 from R and 3 from

• P is a fairly general 3 x 4 matrix 
•left 3x3 submatrix KR is non-singular

Properties of Matrix P
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• Further simplification of P:



Cross-Product in Matrix Form
• If a = (a1, a2, a3)T is a 3-vector, then one can 

define a corresponding skew-symmetric 
matrix

• The cross-product of 2 vectors a and b can 
be written

• Matrix [a]x is singular. Its null vector (right 
or left) is a

•
•
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Definition of Epipolar Geometry

• Projective geometry between 
two views

• Independent of scene 
structure

• Depends only on the 
cameras’ internal parameters 
and relative pose of cameras

• Fundamental matrix F
encapsulates this geometry 
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for any pair of 
corresponding points 
xi and x’i in the 2 images



Relation between 
Image Points xi and xi’

• Camera centers C and C’, 
scene point Xi, 
image points xi and x’i
belong to a common 
epipolar plane 

• Epipoles e and e’
§ On baseline CC’

• Epipolar lines l and l’
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C e e'
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Pencils of Epipolar Lines
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Computation of F

• F can be computed from 
correspondences between 
image points alone

• No knowledge of camera 
internal parameters 
required

• No knowledge of relative 
pose required
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Finding the Fundamental Matrix
from Known Cameras P and P’ (Outline)

• Pick up an image point x in camera P
• Find one scene point X on ray of x in 

camera P
• Find the image x’ of X in camera P’
• Find epipole e’ as image of C in camera P’

is epipole = P’C
• Find epipolar line l’ from e’ to x’ in P’ as 

function of x
• The fundamental matrix F is defined by

l’=F x
• x’ belongs to l’, so x’T l’= 0, so x’T F x = 0
• The fundamental matrix F is alternately 

defined by x’T F x = 0
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C e e'
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Finding the Fundamental Matrix
from Known Cameras P and P’ (Details)

• Pick up an image point x in camera P
• Find one scene point on ray from C to x
§ Point X = P+x satisfies x = PX

• P+ = PT (P PT )-1, so
PX = P PT (P PT )-1 x = x

• Image of this point in camera P’ is 
x’ = P’X = P’ P+x

• Image of C in camera P’ is epipole e’ = P’C
• Epipolar line of x in P’ is

• l’=F x defines F fundamental matrix
• x’ belongs to l’, so x’T l’= 0, so x’T F x = 0
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Properties of Fundamental Matrix F

• Matrix 3X3 (since x’T F x = 0 )
• If F is fundamental matrix of camera pair (P, P’) then 

the fundamental matrix F’ of camera pair 
(P’, P) is equal to FT

§ xT F’ x’ = 0 implies x’T F’T x = 0, so F’ = FT

• Epipolar line of x is l’ = F x 
• Epipolar line of x’ is l = FT x’



More Properties of F

• Epipole e’ is left null space of F, and e is right null space.
§ All epipolar lines l’ contains epipole e’, so e’T l’= 0,

i.e. e’T F x = 0 for all x. Therefore e’T F = 0
Similarly eT FT x’ = 0 implies eT FT = 0, therefore F e = 0

• F is of rank 2 because F = [e’]xP’P+ and [e’]x is of rank 2
• F has 7 degrees of freedom
§ There are 9 elements, but scaling is not significant
§ Det F = 0 removes one degree of freedom



• Define x as intersection between line 
l and a line k (k does not pass 
through epipole e):

• Line e does not pass through point e

• Similarly

Mapping between
Epipolar Lines (a Homography) 
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Retrieving Camera Matrices P and P’
from Fundamental Matrix F

• General form of P is
• Select world coordinates as camera coordinates of first 

camera, select focal length = 1, and count pixels from the 
principal point. Then P= [ I3 | 0]

• Then P’ = [S F | e’] with S any skew-symmetric matrix is a 
solution. Proof:
§ x’ T F x = XT P’T F P X
§ P’T F P = [S F | e’]T F [ I3 | 0 ] is skew-symmetric
§ For any skew-symmetric matrix S’ and any X, 

XT S’ X = 0

• S = [e’]x is a good choice. Therefore P’=[[e’]x F | e’]
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[S F | e’]T F [ I3 | 0 ] is skew-symmetric

• e’T F=0 because e’ is left null space of F
• FT ST F is skew-symmetric for any F and 

any skew-symmetric S
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Essential Matrix E
• Specialization of fundamental matrix for 

calibrated cameras and normalized coordinates
§ x = P X = K [R | T] X
§ Normalize coordinates: x0 = K-1 x = [R | T] X

• Consider pair of normalized cameras
§ P = [I | 0],  P’ = [R | T]

• Then we compute +
×= PP'C[P'F ]
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Essential Matrix and 
Fundamental Matrix

• The defining equation for essential matrix is 
x0’T E x0 = 0, with 
§ x0 = K-1 x
§ x0’ = K’-1 x’

• Therefore x’T K’-T E K-1 x = 0
• Comparing with x’T F x = 0, we get

E = K’T F K



Computing Fundamental Matrix
from Point Correspondences

• The fundamental matrix is defined by the 
equation

• The equation for a pair of points
(x, y, 1) and (x’, y’, 1) is:

• For n point matches:

0=i
T
i xFx' for any pair of 

corresponding points 
xi and x’i in the 2 images
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Computing Fundamental Matrix
from Point Correspondences

• We have a homogeneous set of equations
A f = 0

• f can be determined only up to a scale, so 
there are 8 unknowns, and at least 8 point
matchings are needed 
§ hence the name “8 point algorithm”

• The least square solution is the singular 
vector corresponding the smallest singular 
value of A, i.e. the last column of V in the 
SVD  A = U D VT



Next Class

• 3D Reconstruction from Multiple Views
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