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Probability notation and definitions
* D set of all events, Null event &
* Probability of an event 4 occurring P(4)

e P(D)=1

e P()=0

e forany A, 0 < P(A) <1

e if AC B, then P(A) < P(B)

e P(AUB)=P(A)+P(B)— P(ANnB)
Probability of either of two events occurring

* Probability of both events occurring P(4,B)
P(ANB)=P(A|B)P(B)=P(B|A)P(A4)

*+ Leads directly to Bayes Rule

S gy = PBLAP()

P(B)
» Way to transfer conditional probabilities
» Bayesian Inference
* Independence of two events 4 and B
P(A|B)=P(4)P(B)
+ Conditional independence
P(A,B|C)=P(A|C)P(B|C)

Probability Distributions

+ Instead of single events we look at now a large collection of events.
» Assume that these events can be characterized by a number

» “take to the limit” and look at values of probability for values of x
along the real line

 probabilities associated with x taking on a range of values.
[a,b] (a,b] (-0 o) etc.

» Convenient to look at two distribution functions

b
probability density function Pla<x<b)= Ip(x)dx

cumulative density function F(a)= J p(x)t?x =P(—o<x<a)

*For continuous density functions P(x=a) =0

*Example density function: gaussian N(it,0) = exp| ~ L[ X=H ]
’ 2ro o

Working with distributions

* E(x) is the expected value of a random variable,
Blel= Y aw) Bll= [ @l Ee)= [ gpeds

ievalues
+ E(x) is nothing but the mean or average of x

« Variance var(z) = E[z? — (E(z))?]

» Variance is the difference between the expected value of the
square and E(x)?. - - 2

+ Estimates departures from the n{#4# = xup(x)dx—{ rxp(x)dx}

» Knowing the distribution and how to integrate functions of x
with respect to it we can compute probabilities

» Sampling techniques -- attempt to compute probabilities by
approximating the integral.

» Use known values at a few sample points.

Computing expectations with samples
b Distribution is a device to compute expectations
- Given a distribution of points # and a distribution on these points f'(u/

Represent a probability distribution

__HX)
pr(X) = Tioaw

by a set of N weighted samples

{(u', ")}

where u’ ~ s(u) and w' = f(u')/s(u’).

» Compute expectations N g(udw
using the sample points / 9(U)ps(U)dU ~ ETM
and weights .




Sampling
* Basic problem for Monte-Carlo Methods
— Integrate a function f over a region of volume V'

— Integral may be hard to calculate because
« the function is not known explicitly,
« region over which the integral is to be taken cannot be characterized
« Integral is over many dimensions (e.g. 100s)

— Approximate integral somehow

* Von Neumann while working on

the Manhattan project, approxi
integral as

/dezV(f) LV

N
=yl (=3 L@

i=1

Tracking

* Components:
— amotion model that predicts the new state of the system.
« Allows one to predict y;
— Measurement y. = f(Yi-l) + W,
» Measure things that can also be predicted by your model
« E.g. position of a point, or some other quantity
* Measurement satisfies equation
— Use Bayesian framework X =8 (Yi) TV
— Estimate posterior distribution of y;
* When equations were linear and noise models were
Gaussian, the Kalman filter applies
* When equations are nonlinear and noise is Gaussian we
can use the Extended Kalman filter
* Another approach is to use sampling

Representing the posterior using samples

p(V = vo|U)p(U)
S p(V = vo|U)p(U)dU|

1
= =0V = 0|U)p(O)

 Bayes rule (again) UV =vg) =

* Evalugting K
K = 7P(V =vo|U)p(U)dU

L[S =] ZEap(V = voluut
N YL wi Ef\;l w'
[ OOV =)t ~ & [ @V = v p(w)aU
< LXZ gV = wolu)u!
. ~ K N
+ Evaluate the posterior . Thiw
* Equiv. to comnuting E with YL p(V = volufwi

welght w/i = p(V = vo‘ui)wi

Bayesian Inference

» Convert the simple Bayes formula into a powerful way to
look at any new piece of information.

Probabilistic model with some parameters

« Fixing parameters allows predicting the probabilities of
events. Can calculate P(measurements|parameters)

* Prior: We have an estimate of P(parameters)

Posterior: Given measurements, we want to update our
estimate of the parameters. P(parametersjmeasurements)
* Bayesian inference formula is

P(measurements|parameters) P(parameters)

P(parameters|measurements) = P(measurements)
asurements

Tracking as inference
» Given an estimate of parameters at the new step as 'y

» Use measurement and Bayes rule to improve the estimate
P(y|x) = P(X}\)i”)j()’) _ ?(}f&y‘);(dy;
* Denominator only depends upon the data, and not our
estimates of y
* Thus it is constant w. r. to y and we can write
Py [x) e P(x|y)P(y)

» Often evaluating the denominator is hard and this
proportionality equation is used

Resampling

* Original points may not sample the
posterior well

* Resample ... distribute points according to
the pdf of the posterior and compute new
points u; and weights w;




Algorithm

* Initialize

* Predict using the motion model

* Measure

» Use measurements to obtain new weights

» Resample to generate new points and new
weights

* Loop

Algorithm

[nitialization: Represent P(X,) by a set of N samples
ko k-
{(Sn s Wy )}

sh " ~ Py(8)

‘here

and
k,— k,— k,—
wy' = P(sy " )/Ps(S =s57)

[deally, P(X) has a simple form and s(l;‘_ ~ P(Xg) and wﬁ’_ =1

[Prediction: Represent P(X;|yy, ¥;—1) by

{(ob= )

Algorithm - 2
Correction: Represent P(X;|yg.y;) by

{6l win}

where

kAt _ k-
SI - Sl.

Wbt = P(Y, = X, = ot

i

Resampling: Normalise the weights so that lef"“" = 1 and compute th{
variance of the normalised weights. If this variance exceeds some threshold,
then construct a new set of samples by drawing, with replacement, N sampleq
from the old set, using the weights as the probability that a sample will b{
drawn. The weight of each sample is now 1/N.

Plgorithm 19.8: A practical particle filter resamples the posterior.

‘here
5 = fls;) +&f

The Condensation algorithm
P(X,1Z,.) ST

| ALV L
PXZ) s es-6--008 - S
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p(X,12) 8,7,

Improving the algorithm

» Make the distribution of sample points “better”

* Recall error estimate : 72— ()
of MC method [ravavigy e[ PLUE
1y A
N=x2t@) (=52 @
i=1 i1

* Error can be reduced by
* Increasing N
* Reducing variance of /' computed on the sampled points

* Using deterministic sets of points called quasi-random
points to do the sampling.

Conventional tracking algorithms

* Assume image motion model (e.g., affine)

* Compute flow for patches

* Obtain parameters of the transformation for
patches

* Track ...

* Not very robust ... but could be important for
applications.

* J. Shi and C. Tomasi. .
IEEE Conference on Computer Vision and Pattern
Recognition, June 1994, pp. 593-600




