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Probability notation and definitions
• D set of all events, Null event Ø
• Probability of an event A occurring P(A)

Probability of either of two events occurring



• Probability of both events occurring P(A,B)
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• Way to transfer conditional probabilities
• Bayesian Inference 
• Independence of two events A and B 

P(A|B)=P(A)P(B) 
• Conditional independence

P(A,B|C)=P(A|C)P(B|C)



Probability Distributions
• Instead of single events we look at now a large collection of events. 
• Assume that these events can be characterized by a number 
• “take to the limit” and look at values of probability for values of x

along the real line 
• probabilities associated with x taking on a range of values.

[a,b]  (a,b]  (-∞, ∞) etc.

• Convenient to look at two distribution functions
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•For continuous density functions P(x=a) =0

•Example density function: gaussian 21 1( , ) exp
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Working with distributions
• E(x) is the expected value of a random variable

• E(x) is nothing but the mean or average of x
• Variance
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• Variance is the difference between the expected value of the 
square and E(x)2. 
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• Estimates departures from the mean
• Knowing the distribution and how to integrate functions of x

with respect to it we can compute probabilities
• Sampling techniques -- attempt to compute probabilities by 

approximating the integral.
• Use known values at a few sample points.



Computing expectations with samples
• Distribution is a device to compute expectations
• Given a distribution of points ui and a distribution on these points f (ui)

• Compute expectations
using the sample points
and weights



Sampling
• Basic problem for Monte-Carlo Methods

– Integrate a function f over a region of volume V
– Integral may be hard to calculate because 

• the function is not known explicitly, 
• region over which the integral is to be taken cannot be characterized
• Integral is over many dimensions (e.g. 100s)

– Approximate integral somehow

• Von Neumann while working on
the Manhattan project, approximated
integral as



Bayesian Inference
• Convert the simple Bayes formula into a powerful way to 

look at any new piece of information.
• Probabilistic model with some parameters
• Fixing parameters allows predicting the probabilities of 

events. Can calculate P(measurements|parameters)
• Prior:We have an estimate of P(parameters)
• Posterior: Given measurements, we want to update our 

estimate of the parameters. P(parameters|measurements)
• Bayesian inference formula is 



Tracking
• Components: 

– a motion model that predicts the new state of the system.
• Allows one to predict yi

– Measurement
• Measure things that can also be predicted by your model
• E.g. position of a point, or some other quantity
• Measurement satisfies equation

– Use Bayesian framework 
– Estimate posterior distribution of yi

• When equations were linear and noise models were 
Gaussian, the Kalman filter applies

• When equations are nonlinear and noise is Gaussian we 
can use the Extended Kalman filter

• Another approach is to use sampling  

i i-1 i-1f ( )= +y y w

i i i( )g= +x y v



Tracking as inference
• Given an estimate of parameters at the new step as y
• Use measurement and Bayes rule to improve the estimate
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• Denominator only depends upon the data, and not our 
estimates of y

• Thus it is constant w. r. to y and we can write
( | ) ( | ) ( )P P P∝y x x y y

• Often evaluating the denominator is hard and this 
proportionality equation is used



Representing the posterior using samples
• Bayes rule (again)

• Evaluating K

• Evaluate the posterior

• Equiv. to computing E with
weight



Resampling

• Original points may not sample the 
posterior well

• Resample … distribute points according to 
the pdf of the posterior and compute new 
points uj and weights wj



Algorithm

• Initialize
• Predict using the motion model
• Measure
• Use measurements to obtain new weights
• Resample to generate new points and new 

weights
• Loop
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The Condensation algorithm
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Improving the algorithm
• Make the distribution of sample points “better”
• Recall error estimate

of MC method

• Error can be reduced by 
• Increasing N
• Reducing variance of f computed on the sampled points
• Using deterministic sets of points called quasi-random 

points to do the sampling.



Conventional tracking algorithms
• Assume image motion model (e.g., affine)
• Compute flow for patches
• Obtain parameters of the transformation for 

patches
• Track …
• Not very robust … but could be important for 

applications.
• J. Shi and C. Tomasi. Good Features to Track. 

IEEE Conference on Computer Vision and Pattern 
Recognition, June 1994, pp. 593-600


