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Probability notation and definitions
D setof all events, Null event J
* Probability of an event 4 occurring P(A)

e P(D)=1

e P(0)=0

e forany A,0 < P(A) <1

e if AC B, then P(A) < P(B)

e PIAUB)=P(A)+ P(B)— P(ANB)
Probability of either of two events occurring



Probability of both events occurring P(4,B)
P(A(\B)=P(A|B)P(B)=P(B|A)P(A)

Leads directly to Bayes Rule P(B| A)P(A)

P(A|B) = P05}

* Way to transfer conditional probabilities
Bayesian Inference
Independence of two events A and B
P(A|B)=P(4)P(B)
Conditional independence
P(A,B|C)=P(4|C)P(B|C)



Probability Distributions

Instead of single events we look at now a large collection of events.
Assume that these events can be characterized by a number

“take to the limit” and look at values of probability for values of x
along the real line

probabilities associated with x taking on a range of values.

[a,b] (a,b] (-oo, o) etc.

Convenient to look at two distribution functions

b
probability density function ~ P(a < x < b) = j p(x)dx

cumulative density function F(a)= J p(x)cczl’x = P(—eo<x<a)

*For continuous density functions P(x=a) =0

*Example density function: gaussian N(1L,0) = 1 exp[ 1( X —H)z}



Working with distributions

» FE(x) 1s the expected value of a random variable_
Bl = Y @p@) Ell= [ ap@de E@)= [ gxpds

icvalues

* E(x) 1s nothing but the mean or average of x
» Variance var(z) = E[z® — (E(z))?]
* Variance 1s the difference between the expected value of the

square and E(x)2. var(x) = T () dx—|: T (%) dx:|
» Estimates departures from the mean —

—00

» Knowing the distribution and how to integrate functions of x
with respect to 1t we can compute probabilities

« Sampling techniques -- attempt to compute probabilities by
approximating the integral.

* Use known values at a few sample points.



Computing expectations with samples

 Distribution is a device to compute expectations
* @Given a distribution of points #’ and a distribution on these points f (')

Represent a probability distribution

f(X)
X) —
by a set of N weighted samples
{(u',w")}

where u’ ~ s(u) and w' = f(u')/s(u’).

« Compute expectations
using the sample points
and weights

N Zi\; g(ui)wi
[ sy W)U = S



Sampling
 Basic problem for Monte-Carlo Methods
— Integrate a function f over a region of volume V

— Integral may be hard to calculate because
» the function 1s not known explicitly,
 region over which the integral is to be taken cannot be characterized

* Integral 1s over many dimensions (e.g. 100s)

— Approximate integral somehow

* Von Neumann while working on
the Manhattan project, approximated——_
integral as ' '

N 52— () LN\
/de~V<f)iV\/ = i N

N=g Yt (Fr=3 Y )

Figure 7.6.1. Monte Carlo integration. Random points are chosen within the area A. The integral of the
function f is estimated as the area of A multiplied by the fraction of random points that fall below the
curve f. Refinements on this procedure can improve the accuracy of the method; see text.




Bayesian Inference

Convert the simple Bayes formula into a powerful way to
look at any new piece of information.

Probabilistic model with some parameters

Fixing parameters allows predicting the probabilities of
events. Can calculate P(measurements|parameters)

Prior: We have an estimate of P(parameters)

Posterior: Given measurements, we want to update our
estimate of the parameters. P(parameters/measurements)

Bayesian inference formula 1s

P (measurements|parameters) P(parameters)

P(parameters|measurements) = B -
measurements



Tracking

 Components:
— a motion model that predicts the new state of the system.

* Allows one to predict y;

— Measurement Y. = f(Yi-l) T W,
* Measure things that can also be predicted by your model

* E.g. position of a point, or some other quantity
* Measurement satisfies equation

— Use Bayesian framework X, =g(y;)) + v,
— Estimate posterior distribution of'y;

* When equations were linear and noise models were
Gaussian, the Kalman filter applies

* When equations are nonlinear and noise 1s Gaussian we
can use the Extended Kalman filter

* Another approach is to use sampling



Tracking as inference

G1ven an estimate of parameters at the new step as 'y
Use measurement and Bayes rule to improve the estimate

_P(x|y)P(y) _ P(x|y)P(y)

P(y[x)
P(x) [ Px | y)dy

Denominator only depends upon the data, and not our
estimates of y

Thus 1t 1s constant w. r. to y and we can write
P(y|x)e< P(x|y)P(y)

Often evaluating the denominator 1s hard and this
proportionality equation 1s used



Representing the posterior using samples

Bayes rule (again) p(U|V = vy) = fpzz(‘y ::v’t;(iléf);p((UU) )dU
. = %p(VzvolU)p(U)
Evaluating K
K = 7P(V =vo|U)p(U)dU

= KB

Zé\il w
fg(U)p(U|V = v9)dU =
Evaluate the posterior

e
—

Equiv. to comnuting E with
Welght fwli — p(V — vo|ui)wi

N PN
Zé\il p(V = ’Uoui)wi] ~ Zz:1 P(V — ’v()]u )w

N .
Zz’:l w"

7 [ 9OV = wol)p(U)dU

1 Zj\; g(ui)p(V = U(}|ui)’u;”:

K Zi\il w'
Zi\;l g(u)p(V = vpl|ut)w!

Zil p(V = vo|ut)w?



Resampling

* Original points may not sample the
posterior well

« Resample ... distribute points according to
the pdf of the posterior and compute new
points u; and weights w;



Algorithm

Initialize

Predict using the motion model

Measure

Use measurements to obtain new weights

Resample to generate new points and new
weights

Loop



Algorithm

Initialization: Represent P(X ) by a set of N samples

bo— k.-
{(Su' s Wy }}

sy ~ Py(S)

where

and
k,— k,— k-

Ideally, P(X() has a simple form and Sfj "~ P(Xg) and wff T =1.

Prediction: Represent P(X;|y,, Yy, 1) by

where



Algorithm - 2
Correction: Represent P(X |y, y,) by
{Caa)

where

k4 k-
S, = 8;

k. kY™
w" A P(Y? — y?|X:-* = 8, )fw'i |

T

Resampling: Normalise the weights so that Zﬁwar = 1 and compute the
variance of the normalised weights. If this variance exceeds some threshold,
then construct a new set of samples by drawing, with replacement, N samples
from the old set, using the weights as the probability that a sample will be
drawn. The weight of each sample is now 1/N.

Plgorithm 19.8: A practical particle filter resamples the posterior.



The Condensation algorithm

U NN e
p(X,|Z.) ﬁm
b ey



Improving the algorithm

* Make the distribution of sample points “better”

 Recall error estimate (F2) — (f)?
of MC method /fdv*vmiv N

N=g Yt (Fr=3 Y )

* Error can be reduced by
* Increasing N
* Reducing variance of f computed on the sampled points

» Using deterministic sets of points called quasi-random
points to do the sampling.



Conventional tracking algorithms

* Assume 1image motion model (e.g., affine)
* Compute flow for patches

* Obtain parameters of the transformation for
patches

e Track...

* Not very robust ... but could be important for
applications.

 J. Shi and C. Tomasi. :
IEEE Conference on Computer Vision and Pattern
Recognition, June 1994, pp. 593-600



