Real Time Video Surveillance of Human Activity

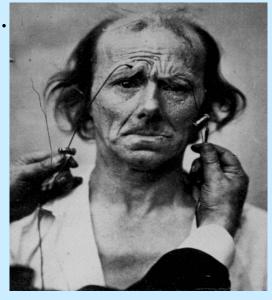
> Larry Davis Computer Vision Laboratory University of Maryland College Park, Maryland

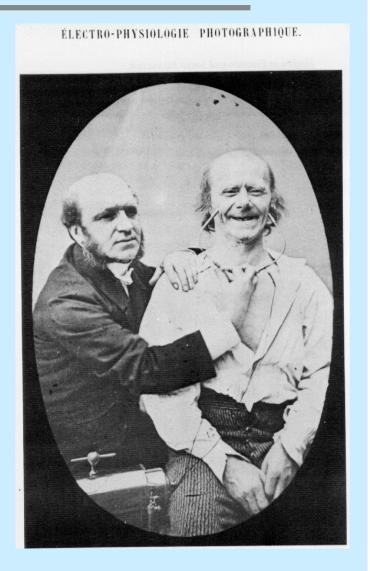
Recognition of facial expressions

Black and Yacoob

- Recognize expressions based on nonrigid motions of facial features
 - separate head "flow" into rigid head motion and facial feature motion
 - applied to real video (Amadeus,

2001, ...





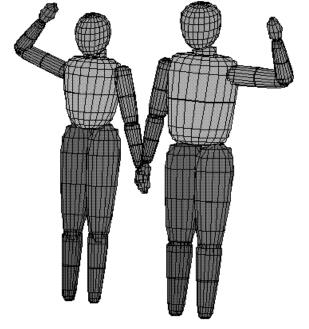
Recognizing facial expressions

More examples

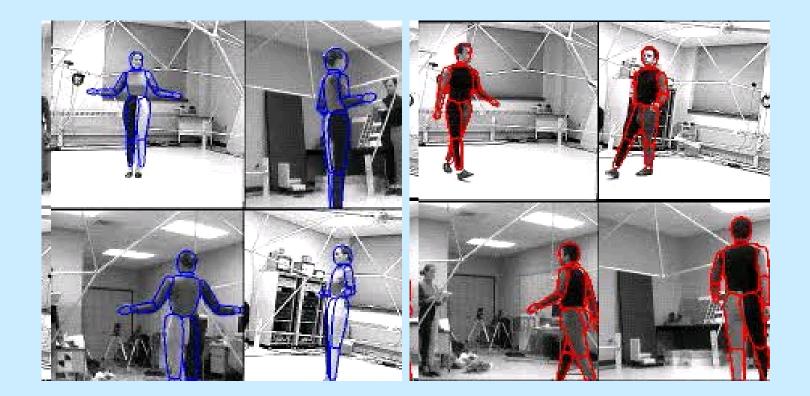
Multi-camera recovery of 3-D body pose

Gavrila and Davis

 Match articulated body part model to 4-7 views of a person in motion

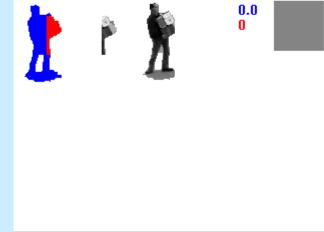


3-D Body Articulation Recovery



Visual Surveillance-Goals

- Detection of moving and fixed objects
- Classification as people, animals, vehicles
- Recognition of specific individuals and vehicles
- Recognition of actions and interactions
 - between people
 - between people and objects



W^4

- Detects and tracks people and their body parts
 - Real Time (~15-30 fps)
 - Monochromatic video camera (visible or infrared)
 - Stationary camera with pan/tilt/zoom
 - People can appear in a variety of poses and in small groups
 - Tracks people, recognizes people carrying and exchanging objects
 - No special hardware dual 450 MHz PC

Detection: Background Modeling

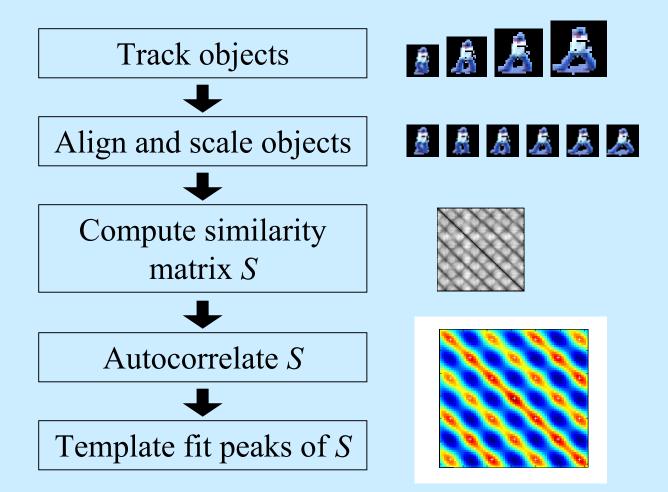
- Sources of Difficulty
 - Camera jitter
 - Motion of background objects

- Model of background variation while the scene contains no people
- Updated during tracking

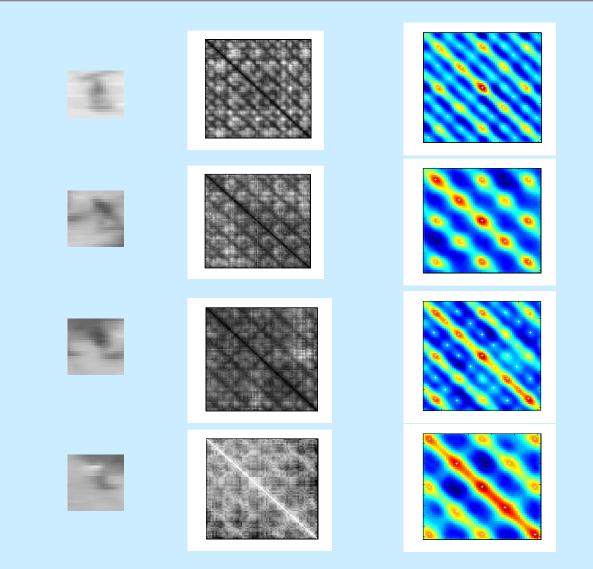
Background Subtraction Example

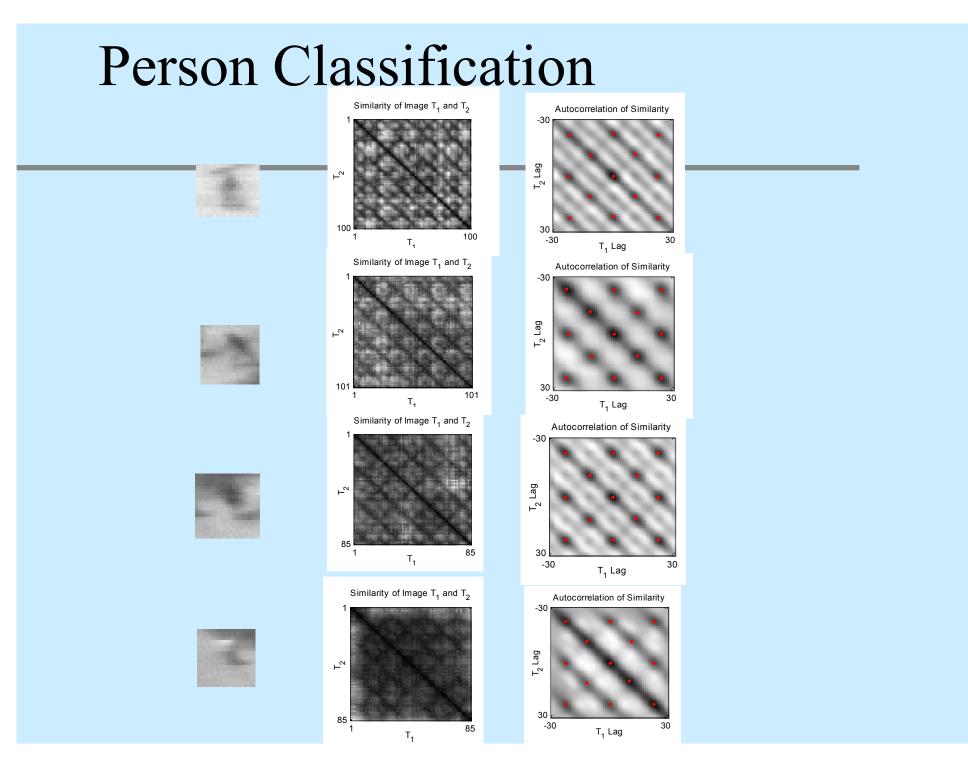


Classification of people using periodic motion

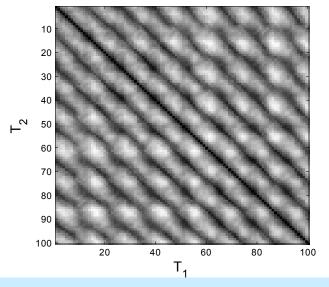


Periodic Motion: People

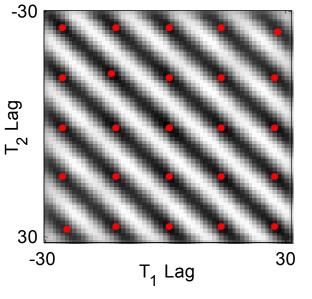




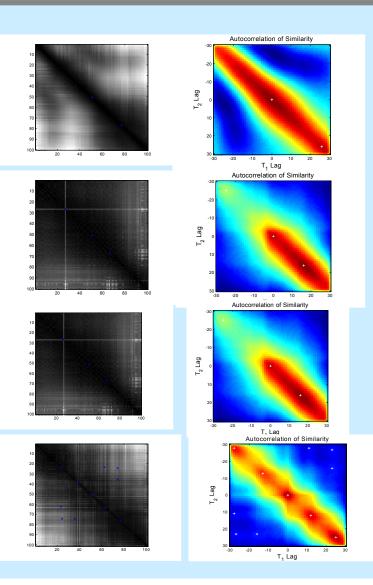
Motion Symmetry of Running Dogs



Autocorrelation of Similarity

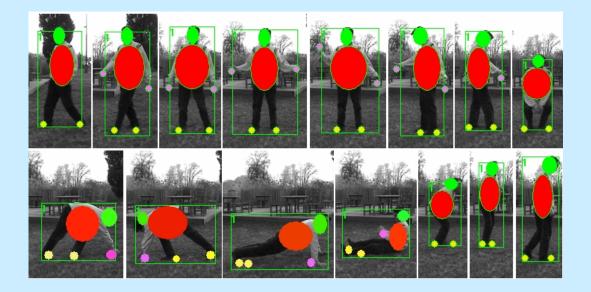


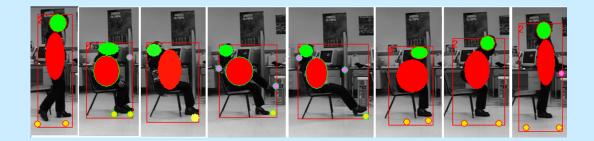
No Periodic Motion: Vehicle



AVS example: *Periodic motion detection*

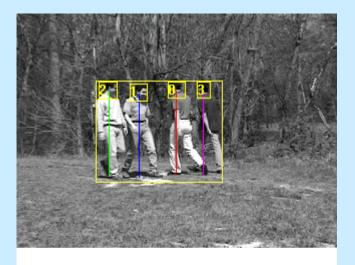
Ghost: Body Part Labeling



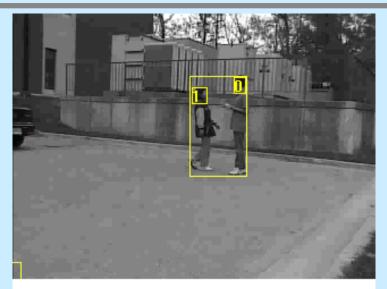


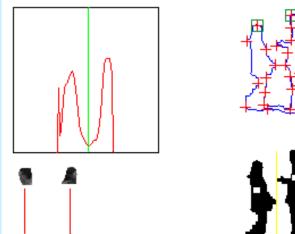
Tracking examples

Analyzing small groups

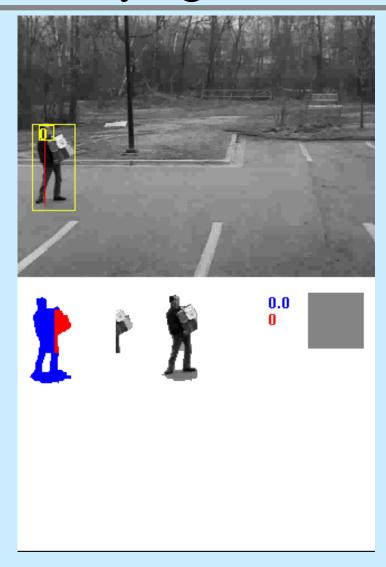


Detailed example



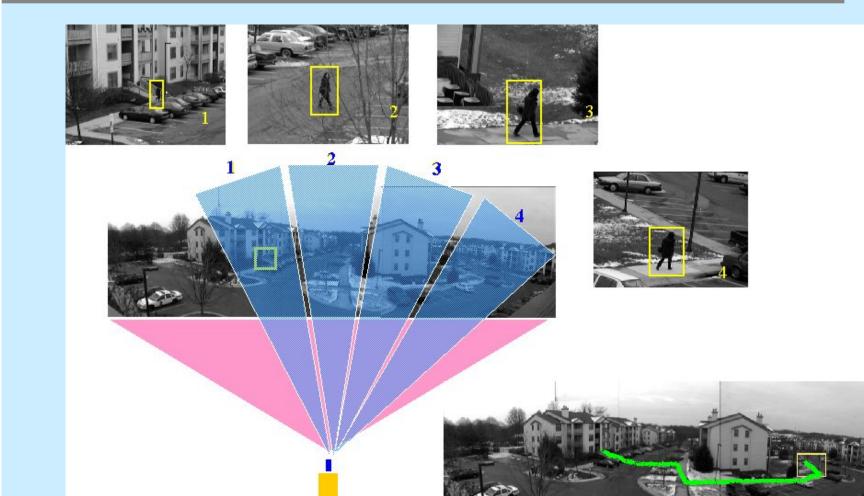


Recognizing interactions between people and objects - carrying and exchanging

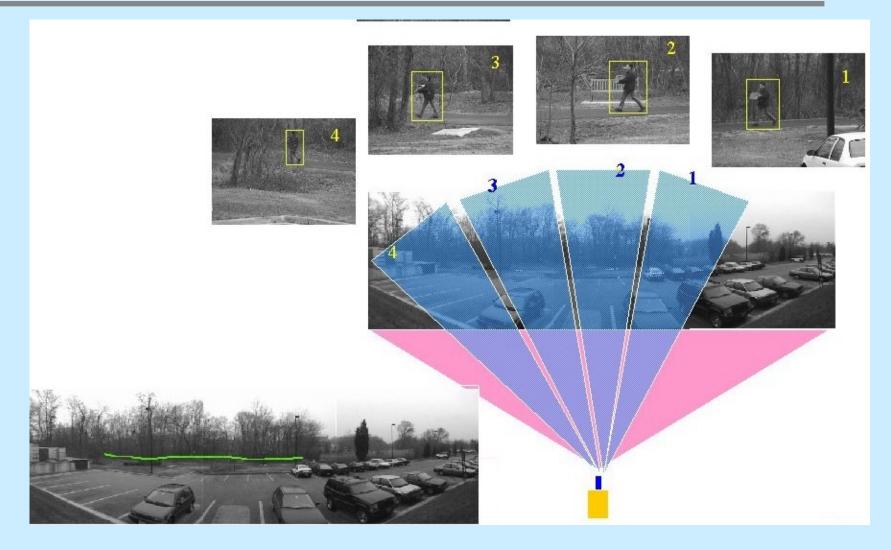


Backpack

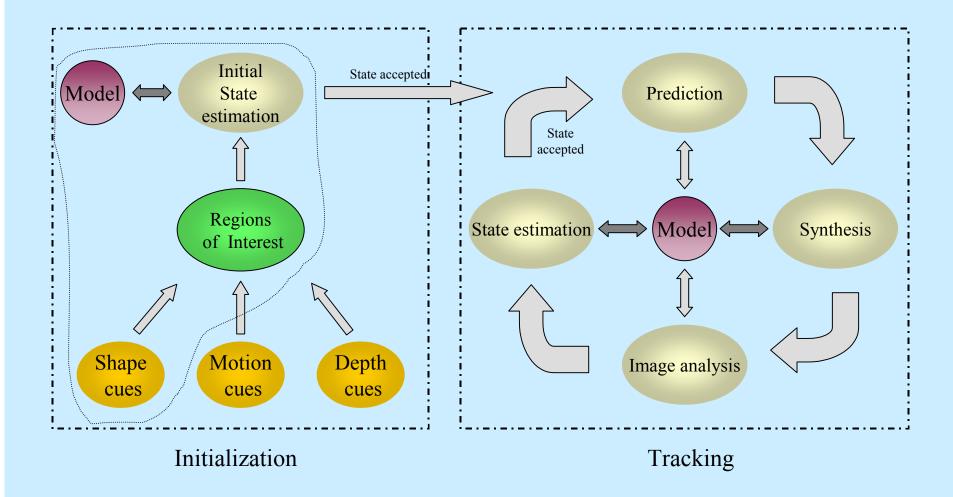
Active tracker



Active tracker



An object detection and tracking framework



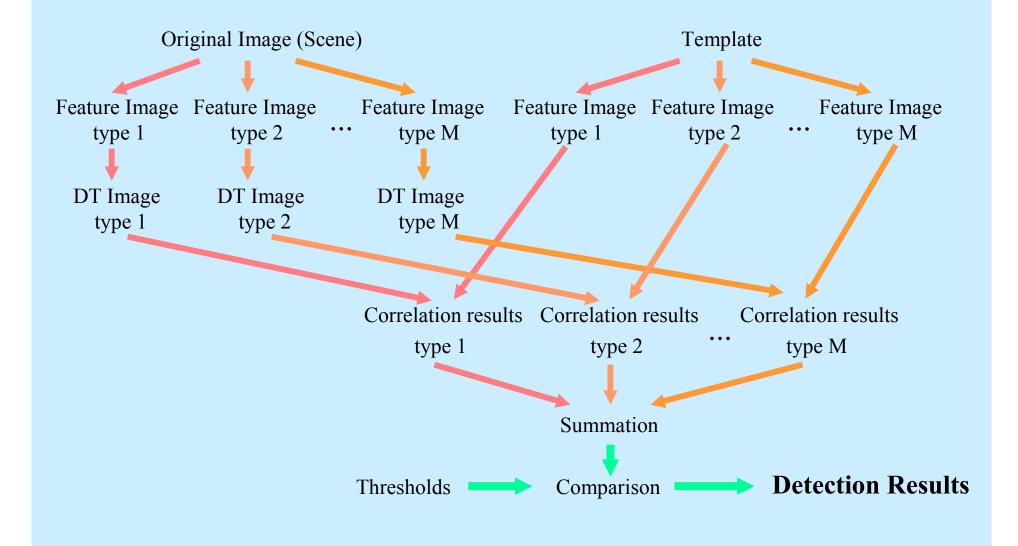
DT based matching



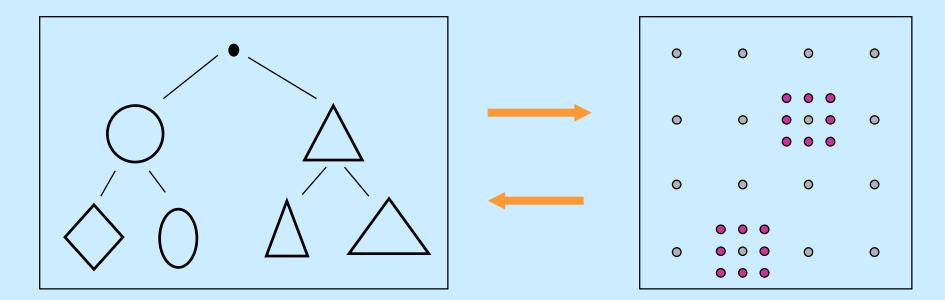
Extensions

- use of multiple feature types
- matching multiple templates using a template hierarchy
- automatically grouping templates to construct the hierarchy

Multiple feature types



Multiple templates and template hierarchy



Factors determining the appropriate distance thresholds during matching

- size search grid
- distance of parent template to its children templates

- segmentation errors
- object variability

Grouping of templates into a hierarchy

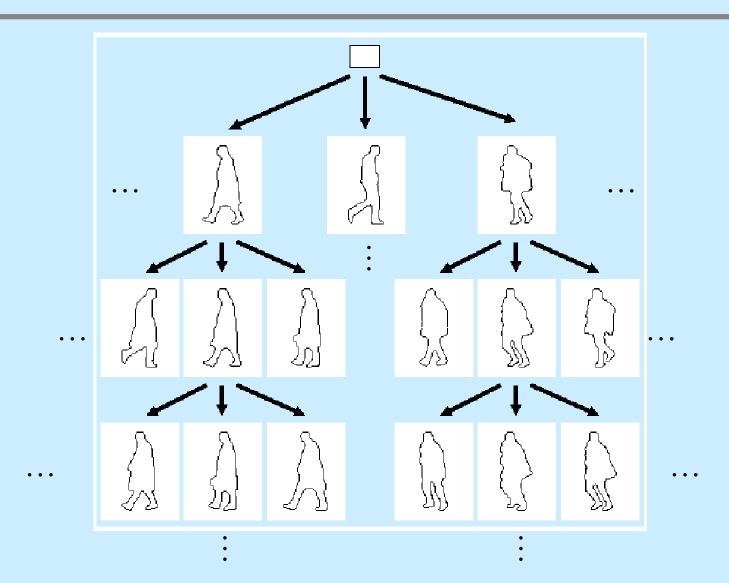
- K-means like clustering algorithm
- Input Number of clusters K and a set of templates
- Output K partitions and prototypes for each group
- Compute distance matrix
- Minimize $E = \sum_{k=1}^{K} \sum_{t_i \in S_k} D(t_i, p_k^*)$
- Two passes at every iteration
 - k-means pass
 - forcing pass
- Simulated annealing

Results - Traffic sign detection

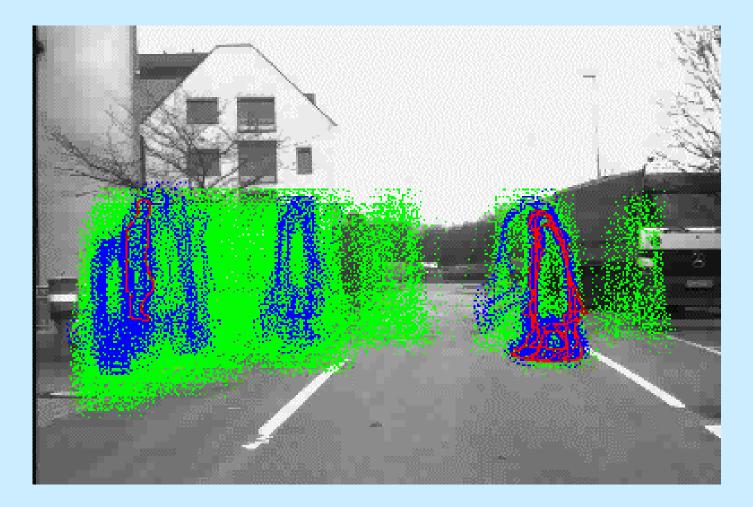
- detection rate > 90 % (single frame)
- false positives < 2 per image</p>
- speed-up factor 200-400 compared to brute-force approach (not including the SIMD implementation)
- 400% increase in speed over standard optimized C code due to SIMD implementation
- processing speed > 11 Hz on dual-Pentium II 333 MHz

Detection results

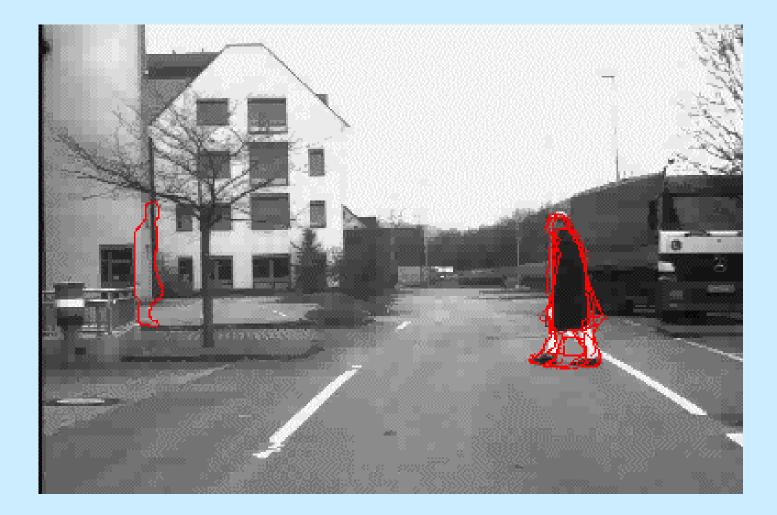
Pedestrian Detection



People detection from static shape models



Detecting people from a moving camera

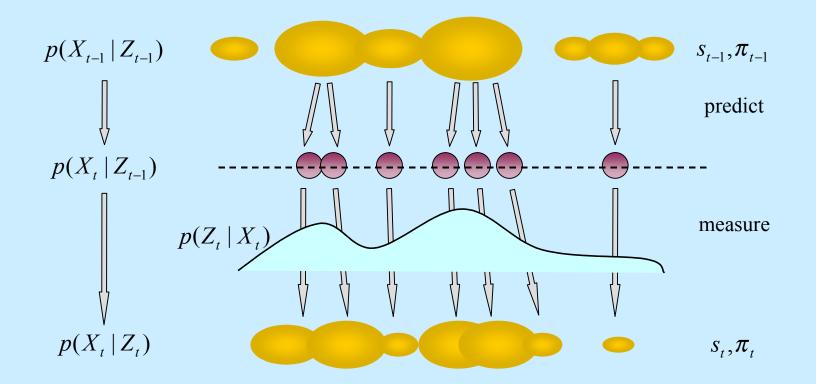


Tracking

Condensation algorithm

- Pdf represented by a set of random samples (Monte Carlo approach)
- Propagate samples (using a motion model as a predictor) and resample
- Update sample probabilities based on measurements

The Condensation algorithm



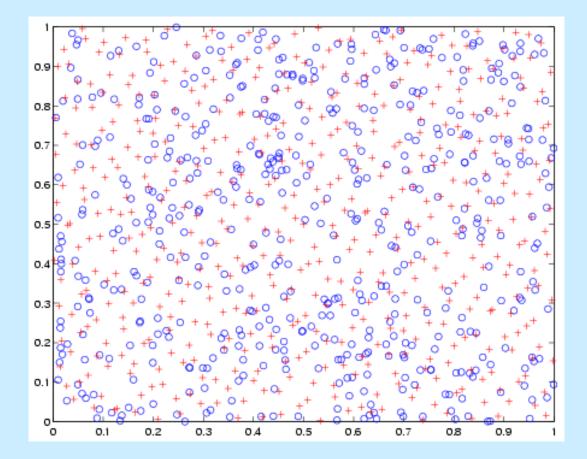
Difficulties

- Learned motion model must be accurate for robust tracking
- Unknown motion model
- High-dimensional state space (4 Euclidean + 8 deformation)
- > Sub-optimal and inaccurate sampling
 - » Sampling error for N points for a 'perfect' pseudo-random generator decreases only as $O(N^{-1/2})$
 - » Rand() is not free of sequential correlation on successive calls
 - » Modulus operator least significant bits less random

Proposed Extensions

- Quasi-Random sequences
 - Want to pick sample points "at random", yet spread out in some self-avoiding way
 - Sequences of k-tuples that fill k-space more uniformly than pseudo-random points
 - Improve asymptotic complexity of search and well spread in multiple dimensions
 - Sampling error decreases as $O(N^{-1})$ as opposed to $O(N^{-1/2})$ for pseudo-random
- Zero-order motion model with large process noise
 - Sample more densely in the gaussian neighborhood of high probability samples from the previous time step

Pseudo-random vs. Quasirandom points



Gaps left by pseudo-random points are filled in by the quasi-random points

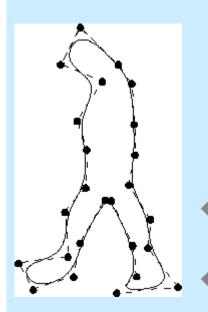
Learning a linear pedestrian model

- Extract a training set of pedestrian contours
- NURB fit to point data $\{Q_k\}$, k=0, ..., n using least squares
 - Parameterize the curve using the centripetal method

$$\overline{u}_{k} = \overline{u}_{k-1} + \frac{\sqrt{|Q_{k} - Q_{k-1}|}}{\sum_{k=1}^{n} \sqrt{|Q_{k} - Q_{k-1}|}} \quad k = 1, \dots, n-1$$

> Solve for the control points P_i from $Q_k = \sum_{i=1}^{n} N_{i,p}(\overline{u}_k) P_i$

- Represent each shape by the shape vector consisting of the control points P_i ("landmark" points in PDM)
- Align the training shapes using Weighted Generalized Procrustes Analysis (more significance to stable landmark points)
- Use PCA to find the modes of variation



Pedestrian tracking

Sample with maximum probability

Mean estimate of the posterior

Surveillance

Modal state (maximum probability)

Mean estimate of the posterior

Probabilistic Framework for Segmenting People Under Occlusion

Motivation:

- What people do while they are interacting is essential for surveillance systems.
- Do not want to lose targets when they are partially occluded by other people.
- Objective:
 - Build representation of different people when they are isolated that enables the segmentation of foreground regions when people are interacting as a group.

Assumptions:

- People are isolated before the occlusion (so can a representation can be created for each one).
- Foreground regions are detected.

Approach:

- Model the color of the major parts of the body (torso, bottom, head).
- Localize the color features with respect to the person.

Representation

Model the person as a vertical set of blobs.

 $M = \{A_{i}\}$

 Each blob has the same color distribution everywhere inside the blob. (color distribution is independent of the location within the blob) i.e.,

 $h_A(c \mid x, y) = h_A(c)$

Representation

 The vertical location of each blob w.r.t. the person is independent of the horizontal location.

 $g_A(y \mid x) = g_A(y)$

⇒The joint distribution within the blob:

 $g_A(y)$

 $P_A(x,y,c) = f_A(x) g_A(y) h_A(c)$

• Given *M*, the probability of color *c* at location *x*, *y* is: $P(x, y, c | M) = \frac{f(x)}{C(y)} \sum_{i} g_{A_i}(y) \cdot h_{A_i}(c)$

Where
$$C(y) = \sum_{i} g_{A_i}(y)$$

• If the Model origin moves to (x_o, y_o) , then $P(x, y, c | M(x_o, y_o)) = \frac{f(x - x_o)}{C(y - y_o)} \sum_{i} g_{A_i}(y - y_o) \cdot h_{A_i}(c)$ • Three blobs: Head, Torso & Bottom. $M = \{H, T, B\} \Longrightarrow$ $P(x, y, u | M) = \frac{f(x)}{C(y)} (g_H(y) \cdot h_H(c) + g_T(y) \cdot h_T(c) + g_B(y) \cdot h_B(c))$

To discriminate between blobs:

 $P(x, y, u | H) \propto (g_H(y) \cdot h_H(c))$ $P(x, y, u | T) \propto (g_T(y) \cdot h_T(c))$ $P(x, y, u | B) \propto (g_B(y) \cdot h_B(c))$

Segmentation under Occlusion

◆ Given 2 Models M₁,M₂
◆ Hypothesis:

Person 1 origin (x₁,y₁)
Person 2 origin (x₂,y₂)

For each Foreground pixel X_i=(x_i,y_i,c_i) use maximum Likelihood classification:

$$X_i \in M_k \text{ s.t. } k = \arg_k \max P(X_i | M_k)$$

Segmentation under Occlusion

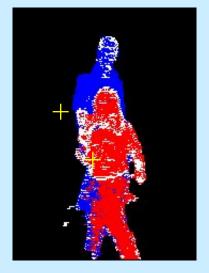
- Each choice (x_1, y_1, x_2, y_2) represents a classification surface between two classes.
- Optimal solution: minimize Bayes error
- Generally, for *N* persons we have a search problem in *2N* dim
- Exhaustive search will require $O(w^{2N})$
- \Rightarrow Not Practical...

Practical Solution

- Look for a good choice for (x_1, y_1, x_2, y_2)
- Use an origin that is always detectable in a robust way. (e.g. Top of the head)

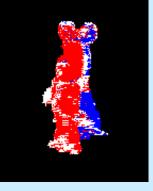
For each new frame *t*

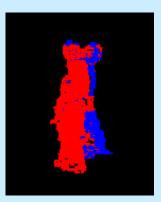
- 1. Given origin location (x_i^{t-1}, y_i^{t-1}) at frame *t*-1
- 2. Classify each pixel using $P(X|M(x_i^{t-1}, y_i^{t-1}))$
- 3. Detect new origin location (x_i^t, y_i^t)
- Iterations through 2,3 might lead to a better solution.



Labeling

- Misclassifications are common at very low likelihood probabilities.
- Consider only strong probabilities: $X_i \in M_k \text{ s.t. } k = \arg_k \max (P(X_i|M_k) > th)$
- Fill in with lower probability pixels.
 (Spatial localization constraint)

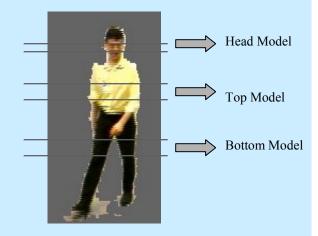


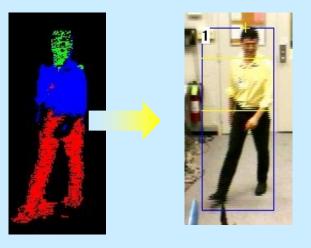


Learning

Learning Color distribution $h_A(c)$

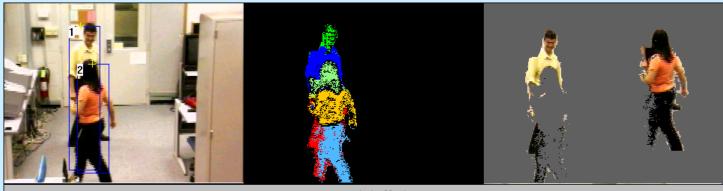
- Initialize blob model with regions at relative locations of the person.
- Classify the whole FG area accordingly.
- Determine blob separators that minimize the misclassifications.
- Recapture blob models.
- Re-segment at each new frame to determine blob separators.





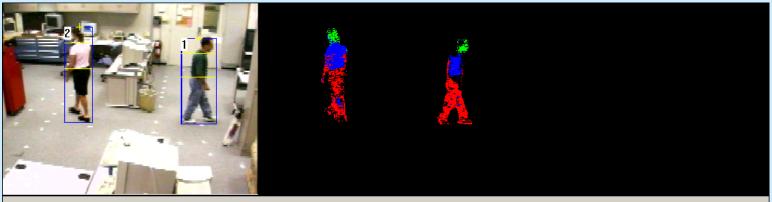
Learning

- Learning Vertical Density $g_A(y)$
 - For each new frame find the histogram of detected blob pixels $H_t(y)$
 - Update density: $g_t(y) = (1-\alpha) g_{t-1}(y) + \alpha H_t(y)$
 - Align densities using a robust feature (we use torsobottom separator)
- Horizontal Density f(x)
 - Assume Normal density.
 - Fit N(μ,σ) to the person detected pixels



segmentation1_c90.avi

segmentation2_c90.avi



seq9_seg_2.avi

Acknowledgements

- ♦ W⁴: Ismail Haritaoglu, David Harwood
- Periodic motion analysis: Ross Cutler
- Kernel estimation methods for background modeling: Ahmed Elgammel, David Harwood
- Detection and tracking: Vasanth Philomin, Dariu Gavrila, Ramani Duraiswami